首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
贫燃料预混燃烧的回火特性研究   总被引:1,自引:0,他引:1  
回火问题是贫燃料预混燃烧面临的主要问题之一。本文采用计算和实验相结合的方法研究甲烷与富氢合成气贫预混燃烧的回火现象,得到不同燃料、不同稳定方式之间的回火特性。研究结果表明,回火极限可以关联为丕雷数模型,环形稳定器的回火稳定性最好,其次为杆稳定器,旋流稳定器的稳定性最差;环形稳定的甲烷预混火焰的回火过程为边缘稳定,适当加入边缘空气同轴射流后变为中心回火,且同轴射流速度存在最佳范围可以提高回火稳定性。  相似文献   

2.
Experimental data is presented for the interaction between a propagating flame and a simple vortex flow field structure generated in the wake of solid obstacles. The interaction between gas movement and obstacles creates vortex shedding forming a simple flow field recirculation. The presence of the simple turbulent structure within the gas mixture curls the flame front increasing curvature and enhancing burning rate. A novel twin camera Particle Image Velocimetry, PIV, was employed to characterise the flow field recirculation and the interaction with the flame front. The technique allowed the quantification of the flame/vortex interaction. The twin camera technique provides data to define the spatial variation of both the velocity of the flow field and flame front. Experimentally obtained values of local flame displacement speed and flame stretch rate are presented for simple flame/vortex interactions.  相似文献   

3.
Stationary combustion regimes, their linear stability and extinction limits of stretched premixed flames in a narrow gap between two heat conducting plates are studied by means of numerical simulations in the framework of one-dimensional thermal-diffusion model with overall one-step reaction. Various stationary combustion modes including normal flame (NF), near-stagnation plane flame (NSF), weak flame (WF) and distant flame (DF) are detected and found to be analogous to the same-named regimes of conventional counterflow flames. For the flames stabilized in the vicinity of stagnation plane at moderate and large stretch rates (which are NF, NSF and WF) the effect of channel walls is basically reduced to additional heat loss. For distant flame characterized by large flame separation distance and small stretch rates intensive interphase heat transfer and heat recirculation are typical. It is shown that in mixture content / stretch rate plane the extinction limit curve has ε-shape, while for conventional counterflow flames it is known to be C-shaped. This result is quite in line with recent experimental findings and is explained by extension of extinction limits at small stretch rates at the expense of heat recirculation. Analysis of the numerical results makes possible to reveal prime mechanisms of flame quenching on different branches of ε-shaped extinction limit curve. Namely, two upper limits are caused by stretch and heat loss. These limits are direct analogs of the upper and lower limits on conventional C-shaped curve. Two other limits are related with weakening of heat recirculation and heat dissipation to the burner. Thus, the present study provides a satisfactory explanation for the recent experimental observations of stretched flames in narrow channel.  相似文献   

4.
Large eddy simulation of bluff-body stabilized swirling non-premixed flames   总被引:1,自引:0,他引:1  
Large eddy simulations (LES) using a subgrid mixing and combustion model are carried out to study two bluff-body stabilized swirling non-premixed flames (SM1 and SMA2). The similarities and differences between the two flames are highlighted and discussed. Flow features, such as, the recirculation zone (RZ) size and the flame structure are captured accurately in both cases. The SM1 flame shows a toroidal RZ just behind the bluff body and a vortex breakdown bubble (VBB) downstream. In addition, a highly rotational non-recirculating region in-between the RZ and VBB is observed as well. On the other hand, the SMA2 shows a single elongated recirculation zone downstream the bluff body. Flame necking is observed downstream the bluff body for the SM1 flame but not for the SMA2 flame. The time-averaged velocity and temperature comparison also shows reasonable agreement. The study shows that the sensitivity of the flame structure to inflow conditions can be captured in the present LES without requiring any model changes.  相似文献   

5.
This paper presents a numerical study of ultra-lean hydrogen-methane flames stabilized behind a rectangular, highly conducting metallic bluff body acting as a flame holder. Using high fidelity numerical simulations, we show that lean inverted steady flames exist below normal flammability limits. They have distinct stabilization mechanism from pure methane flames. These flames are blown-off for sufficiently small velocities, a phenomenon called anomalous blow-off. At even leaner conditions oscillating ultra–lean hydrogen-methane flames can be established. These oscillating flames exist within a rather small range of equivalence ratios and inflow velocities, and move to mean locations closer to the flame holder as the reactant flow is increased. We show that the oscillations are associated with the shedding of flame balls from the downstream end of a “residual flame” that remains attached. Unlike their steady counterparts, the oscillating flames exhibit blow-off at both low velocities (anomalous blow-off) and at sufficiently high inflow velocities (normal blow-off). We show that normal blow-off is linked to heat losses to the flame holder.  相似文献   

6.
Direct numerical simulations were conducted to investigate the effect of two parameters, density ratio and laminar flame speed, on the conditions of the onset of local extinction and blow-off of lean premixed flames, stabilized on a meso-scale bluff-body in hydrogen-air and syngas–air mixtures. A total of six simulation cases were considered as isolated comparison of the two parametric effects of the fluid dynamic instability and flame time scale. For all cases under study, the general flame development towards the blow-off limit showed a sequence of five distinct modes, with possible cyclic patterns among the different modes for a range of velocity conditions. The onset of local extinction was observed during the asymmetric vortex shedding and vortex street mode. As the density ratio is decreased, the flow inunder reviewstability is promoted through the increased sinuous mode, and such behavior was properly scaled by the Strouhal number. Although the blow-off velocity is altered by the fluid dynamic effects, the condition for the onset of local extinction and blow-off was mainly dictated by the competition between flow residence time associated with the lateral flame motion and ignition delay of the local mixtures. Time scale analysis supported the validity of the findings across all the cases investigated.  相似文献   

7.
When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.  相似文献   

8.
Simultaneous measurements of temperature, CH* and OH* chemiluminescent species are carried out to explore the impact of stretch rate and curvature on the structure of premixed flames. The configuration of an initially flat premixed flame interacting with a toroidal vortex is selected for the present study and reasons for this choice are discussed. Lewis number effects are assessed by comparing methane and propane flames. It is emphasized that the flame structure experiences very strong variations. In particular, the flame is shrunk (broadened) in the initial (final) period of the interaction with the vortex where strain rate (curvature) contribution of the stretch rate is predominant. By further analysing independently the thickness of the preheat and reaction zones, it is shown that for propane flames, not only the former but also the latter is significantly altered in zones where the flame curvature is negative. Changes in the reaction zone properties are further emphasized using CH* and OH* radicals. It is demonstrated that higher thermal diffusivity plays a significant role around curved regions, in which the enhanced diffusion of heat leads to a strong increase of CH* compared to OH* intensity. As an overall conclusion, this study suggests that it would be interesting to reassess the internal flame structure at lower and moderate Karlovitz numbers since changes might appear for a moderate vortex intensity with typical size much larger than the flame thickness.  相似文献   

9.
The characterization of premixed flames by a flame speed has been a subject that has occupied much interest in the literature in many systematic studies on combustion phenomena. Consumption and displacement speeds are two such flame speeds that are understood to describe the flame dynamics under the effect of flame curvature, flow non-uniformities, Lewis number and turbulence effects along with heat transfer with flame holders and cold walls. As such, much work has been done in the past where either one of these two speeds has been employed along with a linear sensitivity coefficient (Markstein length) for describing different sensitivities to stretch effects. However, despite recent attempts using the asymptotic theory, the relationship between these two quantities has only been clarified in a limited manner for flames of finite thickness. In this study, we use flame stretch theory that takes into account changes of stretch, curvature, heat transfer and Lewis number effects throughout the pre-heat zone and its integral effect on the flame reaction zone. A sound mathematical and physical basis is provided for understanding the two speeds that is valid for weak as well as strong stretch effects. Understanding from theory is further demonstrated by analysing several example 1D stretched flames along with a 2D bluff body flame near extinction.  相似文献   

10.
Different approaches to the modelling of turbulent combustion first are reviewed briefly. A unified, stretched flamelet approach then is presented. With Reynolds stress modelling and a generalized probability density function (PDF) of strain rate, it enables a source term, in the form of a probability of burning function, Pb, to be expressed as a function of Markstein numbers and the Karlovitz stretch factor. When Pb is combined with some turbulent flame fractal considerations, an expression is obtained for the turbulent burning velocity. When it is combined with the profile of the unstretched laminar flame volumetric heat release rate plotted against the reaction progress variable and the PDF of the latter, an expression is obtained for the mean volumetric turbulent heat release rate. Through these relationships experimental values of turbulent burning velocity might be used to evaluate Pb and hence the CFD source term, the mean volumetric heat release rate.

Different theoretical expressions for the turbulent burning velocity, including the present one, are compared with experimental measurements. The differences between these are discussed and this is followed by a review of CFD applications of these flamelet concepts to premixed and non-premixed combustion. The various assumptions made in the course of the analyses are scrutinized in the light of recent direct numerical simulations of turbulent flames and the applications to the flames of laser diagnostics. Remaining problem areas include a sufficiently general combination of strain rate and flame curvature PDFs to give a single PDF of flame stretch rate, the nature of flame quenching under positive and negative stretch rates, flame responses to changing stretch rates and the effects of flame instabilities.  相似文献   

11.
Lean premixed flame stabilization at atmospheric conditions, in a linear array of five swirl injectors, was modeled using well-resolved large eddy simulation (LES) and chemical kinetics that were accurate both for ignition and flame speed. The effects of injector spacing were studied by selectively blocking injectors in the array to obtain five (F), two (T) and single (S) injector configurations. Each of these was simulated at well-anchored as well as near blow-off conditions. Experiments indicated a blow-off trend that was non-monotonic with spacing: the two-injector configuration exhibited the greatest resistance to blow-off, followed by the single-injector setup. The five-injector configuration proved to be the least resistant (by far) in comparison. In an earlier computational study [1], preferential blow-off in configuration F was successfully modeled and strong flame-flame interference could be investigated. This work is continued to assess the ability of a numerical model to study flames near blow-off, but with varying levels of flame-flame interaction. Passive scalar tracking was used to relate cross-injector transport of material to a given injector’s flame-holding ability. The non-monotonic blow-off trend could not be explained by stretch and heat release rate trends, but well-stirred reactor (WSR) theory was found to be more relevant as trends in recirculation zone residence times correlate well with blow-off sequences. In addition, cross-injector transport was studied due to the multi-injector scenario to assess how flameholding zones may be diluted. This work is expected to be useful for analyzing part-load behavior in multi-injector power-generating gas turbine combustion systems, and helps to characterize injector performance towards extending the range of lean operability.  相似文献   

12.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

13.
Blowout process in premixed swirl dump combustors is known to have temporary partial extinction followed by re-ignition events as precursors. This re-ignition process is investigated using high-speed CH* chemiluminescence and simultaneous TR-SPIV. It was found that during the extinction phase, the flame split into two zones, causing fresh mixture to enter the inner recirculation zone. The sudden loss of heat release causes the flow field to change such that the stagnation point moves further downstream, causing high negative velocity paths in the flow. The flame that was convected downstream, now uses these negative velocity paths to consume the fresh mixture that entered the IRZ. This is the re-ignition phase of the precursor event.  相似文献   

14.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

15.
Mesoscale flame propagation and extinction of premixed flames in channels are investigated theoretically and experimentally. Emphasis is placed on the effect of wall heat loss and the wall–flame interaction via heat recirculation. At first, an analytical solution of flame speed in mesoscale channels is obtained. The results showed that channel width, flow velocity, and wall thermal properties have dramatic effects on the flame propagation and lead to multiple flame regimes and extinction limits. With the decrease in channel width, there exist two distinct flame regimes, a fast burning regime and a slow burning regime. The existence of the new flame regime and its extended flammability limit render the classical quenching diameter inapplicable. Furthermore, the results showed that at optimum conditions of flow velocity and wall thermal properties, mesoscale flames can propagate faster than the adiabatic flame. Second, numerical simulation with detailed chemistry demonstrated the existence of multiple flame regimes. The results also showed that there is a non-linear dependence of the flame speed on equivalence ratio. Moreover, it is shown that the Nusselt number has a significant impact on this non-linear dependence. Finally, the non-linear dependence of flame speed on equivalence ratio for both flame regimes is measured using a C3H8–air mixture. The results are in good agreement with the theory and numerical simulation.  相似文献   

16.
Porous media combustion (PMC) is an active field of research with a number of potential advantages over free-flame combustors. A key contributor to these phenomena is the interphase heat exchange and heat recirculation from the products upstream to the reactants. In this paper, we present a network model that captures the conjugate heat transfer in pore-resolved 2D simulations of PMC. A series of simulations are presented with varying solid conduction and inlet velocity to isolate the role of conjugate heat transfer on the salient features of the burner, including flame stability, axial temperature profiles, and flame structure. We show that both the flame stabilization and the propagation behavior are strongly related to the conjugate heat transfer, and the flame stability regime is shifted to higher velocities as the conductivity of the solid material is increased.  相似文献   

17.
It has been shown both theoretically and experimentally that combustion within porous inert media can extend the flammability limits of reactant mixtures for unstretched stationary premixed flames. However little attention has been given to flames within porous media submitted to stretch conditions. This work presents a closed form approximate analytical solution for the problem of ultra-lean premixed flames within porous inert media subjected to small stretch rates in an impinging flow configuration against a constant temperature wall. The solution is obtained using the method of matched asymptotic expansions taking advantage of the large difference between the solid- and gas-phase thermal conductivities. The model allows for thermal nonequilibrium between the phases and is able to predict the flame temperature, velocity and position as function of the stretch rate. The results show that within porous media low stretch rates may increase the flame temperature, further extending the lean flammability limit of the reactant mixture when compared to planar flames. The model is restricted to low porosities, low stretch rates, low heat losses and intense interphase heat transfer.  相似文献   

18.
This study investigates the effects of curvature on the local heat release rate and mixture fraction during turbulent flame-wall interaction of a lean dimethyl ether/air flame using a fully resolved simulation with a reduced skeletal chemical reaction mechanism and mixture-averaged transport. The region in which turbulent flame-wall interaction affects the flame is found to be restricted to a wall distance less than twice the laminar flame thickness. In regions without heat losses, heat release rate and curvature, as well as mixture fraction and curvature, are negatively correlated, which is in accordance with experimental findings. Flame-wall interaction alters the correlation between heat release rate and curvature. An inversion in the sign of the correlation from negative to positive is observed as the flame starts to experience heat losses to the wall. The correlation between mixture fraction and curvature, however, is unaffected by flame-wall interactions and remains negative. Similarly to experimental findings, the investigated turbulent side-wall quenching flame shows both head-on quenching and side-wall quenching-like behavior. The different quenching events are associated with different curvature values in the near-wall region. Furthermore, for medium heat loss, the correlations between heat release rate and curvature are sensitive to the quenching scenario.  相似文献   

19.
In this paper, we present a study on the effect of Lewis number, Le, on the stabilization and blow-off of laminar lean limit premixed flames stabilized on a cylindrical bluff body. Numerical simulations and experiments are conducted for propane, methane and two blends of hydrogen with methane as fuel gases, containing 20% and 40% of hydrogen by volume, respectively. It is found that the Le?>?1 flame blows-off via convection from the base of the flame (without formation of a neck) when the conditions for flame anchoring are not fulfilled. Le?≤?1 flames exhibit a necking phenomenon just before lean blow-off. This necking of the flame front is a result of the local reduction in mass burning rates causing flame merging and quenching of the thin flame tube formed. The structure of these flames at the necking location is found to be similar to tubular flames. It is found that extinction stretch rates for tubular flames closely match values at the neck location of bluff-body flames of corresponding mixtures, suggesting that excessive flame stretch is directly responsible for blow-off of the studied Le?≤?1 flames. After quenching of the neck, the upstream part forms a steady and stable residual flame in the wake of the bluff body while the downstream part is convected away.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号