首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The electrical characteristics of thin TiO2 films prepared by metal–organic chemical vapor deposition grown on a p-type InP substrate were studied. For a TiO2 film of 4.7 nm on InP without and with ammonium sulfide treatment, the leakage currents are 8.8×10−2 and 1.1×10−4 A/cm2 at +2 V bias and 1.6×10−1 and 8.3×10−4 A/cm2 at −2 V bias. The lower leakage currents of TiO2 with ammonium sulfide treatment arise from the improvement of interface quality. The dielectric constant and effective oxide charge number density are 33 and 2.5×1013 cm2, respectively. The lowest mid-gap interface state density is around 7.6×1011 cm−2 eV−1. The equivalent oxide thickness is 0.52 nm. The breakdown electric field increases with decreasing thickness in the range of 2.5 to 7.6 nm and reaches 9.3 MV/cm at 2.5 nm.  相似文献   

2.
A 3ω approach for the simultaneous determination of the effective thermal conductivity and thermal diffusivity of nanopowder materials was developed. A 3ω experimental system was established, and the thermal properties of water and alcohol were measured to validate and estimate the accuracy of the current experimental system. The effective thermal conductivity and thermal diffusivity of the SiO2 nanopowder with 375, 475, and 575 nm diameters were measured at 290–490 K and at different densities. At room temperature, the effective thermal conductivity and thermal diffusivity of the SiO2 nanopowder increased with temperature; however, both values decreased as the particle diameter was reduced. An optimum SiO2 powder density that decreased with decreasing diameter was also observed within the measurement range. The minimum effective thermal conductivity and maximum effective thermal diffusivity were obtained at 85 × 10−3 kg/L, when the particle diameter was 575 nm. The optimum densities of the particles with 375 and 475 nm diameters were less than 50.23 × 10−3 and 64.82 × 10−3 kg/L, respectively.  相似文献   

3.
Electroluminescence and high-frequency voltage-capacitance methods are used to study Si/SiO2 structures obtained by thermal oxidation of KéF-5 (100)Si wafers at 950°C in wet oxygen (oxide thickness 250 nm). The structures are irradiated by 130-keV argon ions with doses in the range of 1013−3.2×1017 cm−2. A correlation between the origin, properties, and formation mechanism of implantation-induced defects in the oxide layer is established, and a model of defect formation is proposed.  相似文献   

4.
In this work, we report on laser ablation of thermally grown SiO2 layers from silicon wafer substrates, employing an 8–9 ps laser, at 1064 (IR), 532 (VIS) and 355 nm (UV) wavelengths. High-intensity short-pulse laser radiation allows direct absorption in materials with bandgaps higher than the photon energy. However, our experiments show that in the intensity range of our laser pulses (peak intensities of <2×1012 W/cm2) the removal of the SiO2 layer from silicon wafers does not occur by direct absorption in the SiO2 layer. Instead, we find that the layer is removed by a “lift off” mechanism, actuated by the melting and vaporisation of the absorbing silicon substrate. Furthermore, we find that exceeding the Si melting threshold is not sufficient to remove the SiO2 layer. A second threshold exists for breaking of the layer caused by sufficient vapour pressure. For SiO2 layer ablation, we determine layer thickness dependent minimum fluences of 0.7–1.2 J/cm2 for IR, 0.1–0.35 J/cm2 for VIS and 0.2–0.4 J/cm2 for UV wavelength. After correcting the fluences by the reflected laser power, we show that, in contrast to the melting threshold, the threshold for breaking the layer depends on the SiO2 thickness.  相似文献   

5.
The ions of Sb, As, and P have been implanted into germanium at energies ranging from 200 keV to 700 keV. Annealing was performed at 400°C, 550°C, and 650°C. The doping profile was determined by differentialCV-measurements. Strong outdiffusion (80%) and diffusion into the bulk material was observed after annealing. The remaining doping concentration and the diffusion constants were determined by a computer fit at 650°C. We foundD Sb=1.8×10−13 cm2/s,D As=9×10−14 cm2/s andD P=4×10−14 cm2/s. Lower values of the diffusion constant were determined when the samples were covered with a SiO2 layer.  相似文献   

6.
Auger-electron spectroscopy, electron-energy loss spectroscopy, low-energy electron diffraction, and atomic-force microscopy are employed to investigate the growth mechanism, composition, structural and phase states, and morphology of Cu films (0.1–1 nm thick) deposited on a Si(001)-2 × 1 surface at a lower temperature of Cu evaporation (900°C) and room temperature of a substrate. The Cu film phase is shown to start growing on the Si(001)−2 × 1 surface after three Cu monolayers (MLs) are condensed. It has been revealed that atoms of Cu and Si(001) are mixed, a Cu2Si film phase is formed, and, thereafter, Cu3Si islands arise at a larger coating thickness. Annealing of the first Cu ML leads to reconstruction of the Si(001)-1 × 1-Cu surface layer, thereby modifying the film growth mechanism. As a consequence, the Cu2Si film phase arises when the thickness reaches two to four MLs, and bulk Cu3Si silicide islands begin growing at five to ten MLs. When islands continue to grow, their height and density reach, respectively, 1.5 nm and 2 × 1011 cm−2 and the island area is 70% of the substrate surface at a thickness of ten MLs.  相似文献   

7.
Amorphous ErSiO films have been fabricated on p-type Si (001) substrates using rf magnetron sputtering technique. X-ray diffraction, high-resolution transmission electron microscopy, and atomic force microscopy were employed to investigate the samples. It is found that ErSiO film exhibits a flat surface, a sharp interface and superior electrical properties after post-deposition annealing in O2 ambience for 30 min at 450°C. The effective dielectric constant of the film is measured to be 14.2, and the effective oxide thickness reaches 1.9 nm, with a low leakage current density of 1.1×10−4 A/cm2 at an electric field of 1 MV cm−1 after annealing at 450°C. The obtained characteristics make the amorphous ErSiO films a promising substitute for SiO2 as a high-k gate dielectric.  相似文献   

8.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

9.
This article describes a method for silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone) (PVP) as a stabilizer. The Co–Pt nanoparticles were prepared in an aqueous solution at 25–80 °C from CoCl2 (3.0 × 10−4 M), H2PtCl6 (3.0 × 10−4 M), PVP (0–10 g/L), and NaBH4 (4.8 × 10−3–2.4 × 10−2 M). The silica coating was performed for the Co–Pt nanoparticle colloid containing the PVP ([Co] = [Pt] = 3.0 × 10−5 M) at 25 °C in (1/4) (v/v) water/ethanol solution with tetraethoxyorthosilicate (TEOS) (7.2 × 10−5–7.2 × 10−3 M) and ammonia (0.1–1.0 M). Silica particles, which had an average size of 43 nm and contained multiple cores of Co–Pt nanoparticles with a size of ca. 8 nm, were produced at 1.4 × 10−3 M TEOS and 0.5 M ammonia after the preparation of Co–Pt nanoparticles at 80 °C, 5 g/L PVP, and 2.4 × 10−2 M NaBH4. Their core particles were fcc Co–Pt alloy crystallites. Their saturation magnetization was 2.0-emu/g sample, and their coercive field was 12 Oe.  相似文献   

10.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

11.
The influence of MeV electron irradiation on the interface states of argon implanted thin oxide MOS samples has been studied by the thermally stimulated current (TSC) method. The oxide thickness of the structures is 18 nm. Two groups of n-type MOS structures non-implanted and implanted with 20 keV Ar+ ions and a dose of 5×1012 cm−2 are examined. Both groups are simultaneously irradiated by 23 MeV electrons with doses of 1.2×1016, 2.4×1016 or 6.0×1016 el/cm2. The energy position and density of the interface states (generated by electron irradiation, ion implantation or both treatments of the samples) are determined. It is shown that MeV electron irradiation decreases the concentration of interface states (like an oxygen-vacancy and di-vacancy) slightly and creates additional interface states (like an impurity-vacancy) at the Si–SiO2 interface of argon implanted MOS structures.  相似文献   

12.
The paper presents the results of theoretical analysis as well as the results of experimental research involving planar sensor structures with input grating couplers of the period Λ = 800 nm. In the theoretical part of the paper we discussed the influence of the parameters of a sensor structure on it sensitivities. The experimental part of the work presents the results of experimental research involving the influence of refractive index of the cover on the coupling characteristics of sensor structures with grating couplers. The full widths at half maximum (FWHM) were from 0.023° to 0.029°. For the investigated structures we estimated detection thresholds for the changes of refractive index of the cover and the changes of sensitive film thickness. It has been demonstrated that by the application of the elaborated structures we can detect minimal changes of the refractive index (Δnc)min = 2.1×10−6 when the refractive index of the cover nc = 1.333 and (Δnc)min = 1.0×10−6 when nc = 1515. For sensitive films of the thickness w < 100 nm, by using the elaborated structures, we can detect mean changes of the thickness along the values lower than 10−3 nm.  相似文献   

13.
The luminescence kinetics of the Cd II ion at a wavelength of 441.6 nm has been studied experi-mentally in a high-pressure He-Cd mixture in the presence of Ar, Ne, Xe, and CCl4 impurities. Cadmium ions were excited through the bombardment of a cadmium foil heated up to 240°C by a pulsed electron beam with an electron energy of 150 keV, a pulse duration of 3 ns, and a current of 500 A. The constants of collisional quenching of the Cd II 5s 2 2 D 5/2 level by Ar, Ne, and Xe atoms and CCl4 molecules and the integral luminescence quenching constants of this level in the helium medium by these impurity gases have been determined. The constants of collisional quenching appeared to be 8.1 × 10−12 (Ar), 1.2 × 10−12 (Xe), 1.5 × 10−13 (Ne), and 1.8 × 10−10 cm3/s (CCl4, for λ = 325 nm), while the integral constants were found to be, respectively, 4.1 × 10−11, 3.4 × 10−11, 9.5 × 10−12, 1.4 × 10−9 cm3/s for Ar, Ne, Xe, and CCl4 at a buffer gas pressure of 1 atm. Original Russian Text ? A.I. Miskevich, Liu Tao, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 1, pp. 45–49.  相似文献   

14.
O. Schäf 《Ionics》1996,2(3-4):274-281
Potentiometric CO2 gas sensors with Li conducting glasses/glass ceramics of the system Li2O-Al2O3-SiO2 (different nominal composition) as solid electrolytes have been investigated. Li2CO3 was used as CO2 and O2 sensitive auxiliary electrode. During the sensor test measurements, the CO2 partial pressure was varied between 1×10−3 and 1×10−1 bar at a constant O2 partial pressure of 2.1×10−1 bar whereas N2 was used as carrier gas. Comparative measurements were accomplished with sensors comprising Na and K ion conducting glasses. A metastable reference electrode was formed at the contact zone between the Au metal electrode and the former Li glasses of definite nominal composition by crystallization processes taking place, which lead to stable, reproducible CO2 dependent EMF signals for more than 90d. The thermodynamically expected EMF difference and the observed EMF difference agree quite well between 500 and 600 °C. At 600 °C, the drift of sensors with glasses as solid electrolytes and direct Au glass/glass ceramics contact as reference electrode amounts typically 0.32 mV/d (p(CO2)=1×10−3 bar, p(O2)=2.1×10−1 bar at the measuring electrode), if a metastable multiphase equilibrium is formed. At identical partial pressures of CO2 and O2, the signal reproducibility of these sensors with different solid electrolyte glasses of the same nominal composition lies within 30 mV at 600 °C. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

15.
S. Ramesh  G. P. Ang 《Ionics》2010,16(5):465-473
Plasticized polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as the host polymer and lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SO2)2 as a salt were prepared by solution casting technique at different ratios. The ionic conductivity varied slightly and exhibited a maximum value of 3.65 × 10−5 S cm−1 at 85% PMMA and 15% LiN(CF3SO2)2. The complexation effect of salt was investigated using FTIR. It showed some simple overlapping and shift in peaks between PMMA and LiN(CF3SO2)2 salt in the polymer electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were added to the PMMA–LiN(CF3SO2)2 polymer electrolyte as plasticizer to enhance the conductivity. The highest conductivities obtained were 1.28 × 10−4 S cm−1 and 2.00 × 10−4 S cm−1 for EC and PC mixture system, respectively. In addition, to improve the handling of films, 1% to 5% fumed silica was added to the PMMA–LiN(CF3SO2)2–EC–PC solid polymer electrolyte which showed a maximum value at 6.11 × 10−5 S cm−1 for 2% SiO2.  相似文献   

16.
We investigate, both experimentally and theoretically, current and capacitance (I–V/C–V) characteristics and the device performance of Si/SiO2/Si single-barrier varactor diodes (SBVs). Two diodes were fabricated with different SiO2 layer thicknesses using the state-of-the-art wafer bonding technique. The devices have very low leakage currents (about 5×10-2 and 1.8×10-2 mA/mm2) and intrinsic capacitance levels of typically 1.5 and 50 nF/mm2 for diodes with 5-nm and 20-nm oxide layers, respectively. With the present device physical parameters (25-mm2 device area, 760-μm modulation layer thickness and ≈1015-cm-3 doping level), the estimated cut-off frequency is about 5×107 Hz. With the physical parameters of the present existing III–V triplers, the cut-off frequency of our Si-based SBV can be as high as 0.5 THz. Received: 9 February 2001 / Accepted: 9 February 2001 / Published online: 23 March 2001  相似文献   

17.
The results of a joint analysis of volt-ampere and volt-farad characteristics of aPd−SiO x -n-Si structure with a thin (3.7 nm) oxide tunnel layer are presented. It is shown that the forward-bias region of the volt-ampere characteristic can be used to identify the dependence of the surface potential ϕδ inSi on the voltage with consideration of the dielectric layer inhomogeneity as a function of the dielectric thickness. The probability of tunneling through theSiO x layer is estimated for local regions with the least thickness equal to 1.3 nm. When the voltage increases from 0.1 to 0.7 V, the probability of tunneling decreases from 0.78 to 0.40, whereas the potential barrier height increases from 0.04 to 0.08 eV with consideration of the mirror image forces (given that the relativeSiO x permittivity is equal to 3.9). In going from the room atmosphere to a gas mixture comprising 50 vol.% of hydrogen, the positive-charge density in the dielectric increases by 8·10−7 C/cm2. Moreover, the voltage on flat bands and j s decrease for local regions of a specimen with thin dielectric layers much more weakly than for most of the field electrode. V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 3–11, September, 1999.  相似文献   

18.
We have measured the UV absorption spectra of photothermorefractive glasses of the system Na2O-ZnO-Al2O3-NaF-SiO2 doped by cerium oxide in the range of (2.8–5.0) × 104 cm−1 (360–200 nm). The spectra have been processed by the method of dispersion analysis based on the analytical convolution model for the complex dielectric function of glasses. We show that the absorption band centered at 3.3 × 104 cm−1 (∼303 nm) that is attributed to the transition 2F 5/2 → 5d in the Ce3+ ion, is an envelope of three spectral components. The broad absorption range (3.5–4.7) × 104 cm−1 (200–270 nm) that is commonly interpreted as a charge transfer band of the Ce(IV) valence state, is an envelope of at least three spectral components.  相似文献   

19.
Gong  J.  Zhao  C. C.  Yin  J. G.  Hu  P. C.  He  X. M.  Hang  Y. 《Laser Physics》2012,22(2):455-460
A Tm, Mg co-doped LiTaO3 crystal has been grown by Czochralski method. Room temperature polarized absorption spectra and fluorescence spectrum of the Tm, Mg:LiTaO3 crystal were measured and analyzed. The maximum absorption cross-section is 6.0791 × 10−20 cm2 at around 790 nm with full width at half maximum of 5 nm. The emission cross-section of 3 F 4 manifold was 2.2 × 10−20 cm2. The spectroscopic parameters of Tm3+ ion were calculated by applying the Judd-Ofelt approach, and the intensity parameters Ω2, Ω4, and Ω6 were obtained to be 7.71 × 10−20, 1.09 × 10−20, and 1.16 × 10−20 cm2, respectively. The branching ratios and radiative lifetimes were also presented and the radiative lifetime of Tm3+ 3 F 43 H 6 transition is 968.3 μs. The results were also analyzed and compared with other Tm3+ doped hosts.  相似文献   

20.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号