首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Harmonic operation of high gain harmonic generation free electron laser   总被引:1,自引:1,他引:0  
In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy.  相似文献   

2.
With the right choice of parameters in the free electron laser (FEL) scheme, the undulator can be primarily operated at high order harmonic modes and the harmonic radiation is expected to be significantly enhanced. Recently, the possibility of proof-of-principle harmonic operation experiments on the basis of the Shanghai deep ultraviolet (SDUV) FEL test facility has been studied. In this paper, the principle of harmonic operation, three dimensional numerical approaches, and detailed performances of proposed harmonic operation at SDUV FEL are presented.  相似文献   

3.
With the right choice of parameters in the free electron laser (FEL) scheme, the undulator can be primarily operated at high order harmonic modes and the harmonic radiation is expected to be significantly enhanced. Recently, the possibility of proof-of-principle harmonic operation experiments on the basis of the Shanghai deep ultraviolet (SDUV) FEL test facility has been studied. In this paper, the principle of harmonic operation, three dimensional numerical approaches, and detailed performances of proposed harmonic operation at SDUV FEL are presented.  相似文献   

4.
Generation of X-ray radiation in a cascade self-amplified spontaneous emission free-electron laser (SASE FEL) using the harmonics of a two-frequency undulator is studied. The advanced phenomenological model of a one-pass FEL that accounts for the main losses in real FELs is presented: the electron energy spread in the beam, the beam divergence, diffraction, and the fact that emission losses are greater at higher harmonics than in the main frequency range. The FEL mathematical model was performed using the Mathematica software and calibrated within the experiment carried out at the operating SPARC facility via complex three-dimensional numerical simulations. The phenomenological model is used to analyze FEL dynamics for generation of a high-energy X-ray emission at a relatively short length. It is proposed to use a two-frequency undulator for the initial electron grouping and subsequent frequency multiplication in a cascade FEL with higher harmonic amplification (HGHG). The advantages of the two-frequency undulator are presented for electron grouping at higher harmonics of the undulator radiation (UR). The operation of several types of FEL is simulated with amplification of the seed laser wave frequency in two and three cascades to generate the soft X-ray radiation. A seed laser with a wavelength of 11.43 nm corresponding to the peak reflectivity of mirror coatings with MoRu/Be is proposed for generating the intensive X-ray laser radiation with λ ~ 1.27–3.37 nm. Here, the intensive radiation power reaches 50 MW at a length of only 35 meters; the radiation shows good temporal coherence corresponding to the performance of a low-power seed laser with a lower frequency.  相似文献   

5.
In a planar undulator employed free electron laser (FEL), each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation. In this paper, we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations, taking into account the effects due to energy spread, emittance, betatron oscillation of electron beam as well as diffraction guiding of the radiation field. A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented, which promise rapid computation in FEL design and optimization. The analytical approaches have been validated by 3D simulation results in large range.  相似文献   

6.
The echo-enabled harmonic generation(EEHG)scheme offers remarkable efficiency for generatinghigh harmonic microbunching with a relatively small energy modulation.A proof of principle experiment of the EEHG scheme has been proposed at the Shanghai deep ultraviolet(SDUV)free electron laser(FEL)facility,where the 4th harmonic of the seed laser is amplified in the 9 m long radiator.To explore the advantages of the EEHG scheme,in this paper,a method of measuring the coherent high harmonic radiation of the radiator is proposed to investigate the electron beam microbunching corresponding to the 10th-20th harmonics of the seed laser.The principle of the proposed method,comparisons with existing methods and the simulation results are presented and discussed.  相似文献   

7.
In a planar undulator employed free electron laser(FEL),each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation.In this paper,we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations,taking into account the effects due to energy spread,emittance,betatron oscillation of electron beam as well as diffraction guiding of the radiation field.A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented,which promise rapid computation in FEL design and optimization.The analytical approaches have been validated by 3D simulation results in large range.  相似文献   

8.
 自由电子激光中的非线性谐波辐射能达到较高的谐波功率,可以用来得到短波长辐射或者降低第4代先进光源对电子束团品质的严厉要求。基于3维自由电子激光软件,深入详细地研究了上海深紫外自由电子激光装置的非线性谐波辐射,并且提出了谐波辐射实验和测量建议。研究表明上海深紫外自由电子激光装置3次非线性谐波辐射的功率可以达到基波功率的2%水平。  相似文献   

9.
We report the first experimental results on a high-gain harmonic-generation (HGHG) free-electron laser (FEL) operating in the ultraviolet. An 800 nm seed from a Ti:sapphire laser has been used to produce saturated amplified radiation at the 266 nm third harmonic. The results confirm the predictions for HGHG FEL operation: stable central wavelength, narrow bandwidth, and small pulse-energy fluctuation.  相似文献   

10.
 有效利用电子束在波荡器中运动时产生的谐波辐射,是获得更短波长辐射最直接的方法之一。提高波荡器磁场的谐波分量可以提高电子束的谐波辐射光场强度。分析了一种改进Halbach型波荡器结构,计算了其磁场的构成,分析表明这种结构可以使磁场的三次谐波分量提高至基波分量的25%左右。以合肥光源的电子束参数为例,计算了波荡器磁场谐波分量增强后对电子束自发辐射谱的影响。计算结果表明,波荡器磁场谐波分量增强至25%时,可以使电子束自发辐射的三次谐波辐射增强至基波辐射光子通量的67%左右。  相似文献   

11.
In this paper,by using the"frequency up-conversion"principle with a high gain harmonic generation free electron laser and an external seed laser,we consider the possibility of modulating a relativistic electron beam on the attosecond scale,so that it can produce coherent spontaneous radiation from the deep ultraviolet to the hard X-ray spectral region with a very short radiator.Analytical estimation and three-dimensional numerical modeling show the great potential to reach ultra-high harmonics up to several thousand.For an electron bunch with the typical quality as in the free electron laser scheme and a seed laser with 800 nm wavelength,0.8 nm attosecond trains with alterable duration and GW scale peak power are modeled.The output radiation exhibits good shot-to-shot stability,full coherence and perfect tuning ability between the discrete harmonics of the seed frequency.  相似文献   

12.
Cascading stages of seeded free electron lasers (FELs) is a promising way to produce fully coherent X-ray radiation. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG) The scheme consists of one dogleg and two PEHG configurations, and may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and full coherence The radiated peak power at 1 Å wavelength converted from an initial 200 nm seed laser is over 2 GW.  相似文献   

13.
null 《中国物理C(英文版)》2016,40(9):098102-098102
We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations.Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.  相似文献   

14.
A phase‐merging enhanced harmonic generation free‐electron laser (FEL) was proposed to increase the harmonic conversion efficiency of seeded FELs and promote the radiation wavelength towards the X‐ray spectral region. However, this requires a specially designed transverse gradient undulator (TGU) as the modulator to couple the transverse and longitudinal phase space of the electron beam. In this paper, the generation of the phase‐merging effect is explored using the natural field gradient of a normal planar undulator. In this method, a vertical dispersion on the electron beam is introduced and then the dispersed beam travels through a normal modulator in a vertical off‐axis orbit where the vertical field gradient is selected properly in terms of the vertical dispersion strength and modulation amplitude. The phase‐merging effect will be generated after passing through the dispersive chicane. Theoretical analysis and numerical simulations for a seeded soft X‐ray FEL based on parameters of the Shanghai Soft X‐ray FEL project are presented. Compared with a TGU modulator, using the natural gradient of a normal planar modulator has the distinct advantage that the gradient can be conveniently tuned in quite a large range by adjusting the beam orbit offset.  相似文献   

15.
Cascading stages of high gain harmonic generation free electron laser (FEL) seem to be a feasible way to generate short wavelength radiation. With help of the analytical estimates, we design a two-stage cascading scheme to achieve 131 nm DUV radiation on the basis of the Shanghai deep ultraviolet free electron laser test facility. Detailed studies on the FEL performance, the stability and the sensitivity of the output power to parameter variation have been achieved by GENESIS1.3, and design of the lattice structure is presented.  相似文献   

16.
Power and spectral measurements are reported from the Columbia Raman free-electron laser (FEL) oscillator experiment. High-power radiation pulses (~12 MW, 100 ns) are generated at a wavelength of ~2.5 mm, using a 750-kV electron beam injected into a helical undulator. The undulator is made up of a 40-cm long constant-period (1.45 cm) section followed by an equal length of tapered undulator. The period is decreased by 7.6% in such a way that the on-axis field remains constant. It is reported that the taper allows an increase in total power efficiency from ~4 to ~12%. Most noteworthy is that the tapered undulator reduces the sideband radiation compared with a constant-period undulator FEL which is studied in the same configuration. The power was measured calorimetrically and compared with the results of a 1-D Raman code. The reduction of sideband power observed in the experiment was consistent with computational results obtained with a 2-D sideband code  相似文献   

17.
The authors examine the characteristics of the classical radiation emitted by a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator are obtained using perturbation techniques and are then compared to numerical simulation results. The frequency spectrum and angular distribution of the spontaneous radiation emitted by a single electron and the stimulated radiation gain are obtained analytically, and are then compared to 3-D numerical simulations. The characteristics of the plasma wave undulator are compared to the AC free-electron laser (FEL) undulator and the conventional FEL  相似文献   

18.
Direct seeding with a high-harmonic generation (HHG) source can improve the spectral, temporal, and coherence properties of a free-electron laser (FEL) and shall reduce intensity and arrival-time fluctuations. In the seeding experiment sFLASH at the extreme ultraviolet FEL in Hamburg FLASH, which operates in the self-amplified spontaneous emission mode (SASE), the 21st harmonic of an 800 nm laser is refocused into a dedicated seeding undulator. For seeding, the external light field has to overcome the noise level of SASE; therefore, an efficient coupling between seed pulse and electron bunch is mandatory. Thus, an HHG beam with a proper divergence, width, beam quality, Rayleigh length, pointing stability, single-shot pulse energy, and stability in the 21st harmonic is needed. Here, we present the setup of the HHG source that seeds sFLASH at 38.1 nm, the optimization procedures, and the necessary diagnostics.  相似文献   

19.
Laser-beam interaction in an undulator is commonly suggested in the development of free electron laser(FEL)schemes. In this paper, a three-dimensional algorithm is developed to assist in laser-beam interaction simulation in an undulator, which is built on the basis of the fundamentals of electrodynamics, i.e.the electron's behavior is determined by the magnetic field and the laser electric field in the time domain. On the basis of the algorithm, the detuning effect in a laser heater, the carrier envelope phase effect of a few-cycle laser in attosecond X-ray FEL schemes and output wavelength tuning in a high gain harmonic generation FEL are numerically discussed.  相似文献   

20.
刘金英 《物理》1999,28(12):720-723
相干谐波自由电子激光不用光学谐振腔及反射镜,可望工作在紫外和真空紫外光波段,是第四代同步辐射光源的可能途径之一。由于对束流品质要求很高,相干谐波自由电子激光首先是以储存环作为驱动器而发展起来的。由于光阴极微波电子枪的发展和直线加速器技术的进步,目前,已开始有直线加速器驱动的高增益相干谐波自由电子激光的建议。文章介绍了相干谐波储存环自由电子激光的原理、现状及展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号