首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiplet splitting patterns of microwave transitions in the ground state and the first two torsional excited states of CH3OCH3, CD3OCD3, and CD3OCH3 were analyzed in terms of the semirigid rotor models C2vF-C3vT-C3vT and C3F-C3vT-C3vT?. The following nonzero potential coefficients were obtained for CH3OCH3: V30 = V03 = 909.05 ± 0.49 cm?1, V33 = 5.06 ± 1.60 cm?1; for CD3OCH3: V30(CD3) = 897.18 ± 2.41 cm?1, V03(CH3) = 910.45 ± 0.33 cm?1; for CD3OCD3: V30 = V03 = 897.00 cm?1. These results are compared to earlier microwave studies of these molecules.  相似文献   

2.
The far-infrared torsional spectrum of ClONO2 (chlorine nitrate) was reexamined at 0.06-cm?1 apodized resolution. The torsional spectrum consists of a single, regularly spaced series of Q branches at 122.56 ? 2.422 v′ + 0.0296 v2 cm?1. Chlorine nitrate is planar with torsional potential constants V2 = 1900 ± 100 cm?1 and V4 = 90 ± 50 cm?1. The torsional partition function is calculated at room and stratospheric temperatures.  相似文献   

3.
The ν2 band of CH3CD3 has been measured under an effective resolution of 0.04 cm?1. About 400 transitions observed in the region from 2130 to 2060 cm?1 have been identified as due to the ν2 fundamental band. The least-squares analysis of these transitions yields the band constants: ν0 = 2089.957, B′ = 0.548937, DJ = 6.97 × 10?7, DJK = 1.92 × 10?6, A′ - A″ = ?0.01158, and DK - DK = 1.30 × 10?6 cm?1. The ground-state constants B″, DJ, and DJK are fixed to the values obtained from microwave spectroscopy.  相似文献   

4.
The parallel band, 2ν3, of CH3CD3 is measured in the region 2715 to 2780 cm?1 under a spectral resolution of ~0.025 cm?1, increased to ~0.015 cm?1 by deconvolution. About 460 lines are identified in the 2ν3 band, and about 240 lines in a hot band arising from the first excited torsional state. Least-squares analyses with Δ2F″ combination differences yield lower-state parameters. An individual subband analysis is undertaken because of perturbations in the vibrational bands studied. Finally, band constants are derived.  相似文献   

5.
The OH-stretch fundamental of CH3OH has been observed with 0.025 cm?1 resolution between 3430 and 3940 cm?1 and the resulting spectrum deconvoluted using the procedure of P. A. Jansson. Approximately 600 lines have been assigned to a total of 67 P- or R-branch series and some 30 excited state levels have been determined. Of these, 14 belong to the lowest torsional state with n = 0, 13 to n = 1 and 3 to n = 2. A nonlinear least-squares fit to these levels varying the major parameters used by Y. Y. Kwan and D. M. Dennison in their analysis of the normal state produces an rms deviation between observed and calculated levels of 0.51 cm?1. Variation of all the parameters including those of the smaller Kirtman perturbation terms produces only a slight improvement in the fit. Both analyses yield a barrier height of 411 cm?1 in the excited vibrational state as compared to the normal state value of 373 cm?1. A number of unexplained anomalies appear in the spectra including large and irregular changes in the coefficient of J2 + J for different torsion-rotation states.  相似文献   

6.
We present Doppler resolution limited spectra of the P(J) and R(J) multiplets for J ≦ 10 of the 10-μm CO stretch band of 12CD316OH using a tunable diode laser. Relative frequencies within the multiplets accurate to ±0.0002–0.0005 cm?1 are obtained, but no absolute frequencies are given. We are able to assign most of the hindered rotation and K substructure in these multiplets. The assignments are based on analyses of Stark-difference spectra combined with the ground-state microwave data and the intensity variations which are expected theoretically. The ground and excited state A, K = 1 asymmetry splitting parameters are measured to be δ1″ = (8.5450 ± 0.0080) × 10?3cm?1 and δ1′ = (9.7706 ± 0.0080) × 10?3cm?1, respectively. The ground-state value agrees well with the microwave results. A rapid-scan system for recording data and a computer-aided technique for calibrating and plotting the spectra are described.  相似文献   

7.
The microwave spectra of CH2DCOOH and CHD2COOH have been studied by means of microwave-microwave double resonance. For the asy rotamers torsional splittings (5898 and 530 MHz, respectively) and effective rotational constants were determined in the ground state. Effective barrier parameters were provisionally estimated and used to predict excited-state spectra. Here significant interaction between sy and asy rotamers occurred, and a Hamiltonian based on an extension of the IAM method to the case of an asymmetric internal rotor was used to account for the spectra. A few direct sy-asy transitions were observed as well as spectra originating from the second excited torsional state. Effective potential energy coefficients, V1 through V6, were determined accurately; apart from V3 and V6, which are comparable to values in CH3COOH and CD3COOH, large V2 terms occur (28.5 cm?1 in CH2DCOOH and ?25.4 cm?1 in CHD2COOH). These terms provide localization in the ground state wave functions, and can be rationalized as arising from the zero-point energies of the other normal vibrations. Also determined were Fourier components of the rotational constants, which were in fair agreement with results from model calculations when geometry relaxation was included. After correction of the ground state inertial moments for effects of the torsion a consistent set of inertial moments was obtained for the various isotopic species, and a complete substitution structure could be determined. The HCH angles in the methyl group were found to differ by 2.7°.  相似文献   

8.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

9.
The electronic absorption spectra of CH3CHO, CH3CDO, CD3CHO, and CD3CDO have been obtained in the vacuum ultraviolet region. Vibrational analysis of the 182-nm system was made with the help of wavenumbers from their infrared spectra and also geometries and wavenumbers obtained from ab initio calculations. This system is assigned as a single Rydberg (3s ? n) electronic transition.  相似文献   

10.
Rotational analysis of the (0,0) band of the B2Σ-X2Σ transition of ScS is reported. Spectrographic illustration of a hyperfine coupling transition in the ground state is demonstrated for the first time. This enables an order of magnitude to be obtained for γ″ (~0.003 cm?1). The results for the other constants were: X state: B″ = 0.1971 cm?1, D″ = 5 × 10?8cm?1, 4b = 0.23 cm?1 (equal to that for ScO within the limits of measurement uncertainty); B state: B′ = 0.1853 cm?1, D′ = 6 × 10?8cm?1, γ′ = ?0.0594 cm?1, which can be compared with pA2Π = 0.060 cm?1. It was found that the two excited states A2Π and B2Σ constitute an excellent example of pure precession (ppp = 0.058 cm?1, and this enables the vibrational levels of A2Π to be numbered.  相似文献   

11.
A vibrational and rotational analysis is presented for the D′ → A′ transition (2800–2950 Å) of Br2. The analysis includes 11 rotationally analyzed bands for 79Br2 and 3 for 81Br2, plus bandheads for 70 additional v′-v″ bands of 79Br2, 81Br2, and 79Br81Br. The latter include some violet-degraded and spikelike features at the long-wavelength end of the spectrum, which are interpreted and assigned with the aid of band profile simulations. The assigned features are fitted directly to 14 vibrational and rotational expansion parameters for the two electronic states, from which the following spectroscopic constants are obtained: ΔTe = 35706 cm?1, ωe = 150.86 cm?1, ωe = 165.2 cm?1, Be = 0.042515 cm?1, Be = 0.05944 cm?1, R′e = 3.170 A?, R″e = 2.681 A?. The spectroscopic parameters are used to calculate RKR potentials and Franck-Condon factors for the transition.  相似文献   

12.
The B3Π(0+) ← X1Σ+ absorption spectrum of BrF (4850–5200 Å) has been observed by the technique of laser emission spectroscopy. Fluorescence was excited by a pulsed, scannable dye laser with a 0.1 Å bandwidth. Rotational analysis has been carried out for six bands of the v″ = 0 progression (8 ≥ v′ ≥ 3) of 79BrF and 81BrF. Rotational constants for the B3Π(0+) state are reported for the first time. RKR potential energy curves for both states, and an array of Franck-Condon factors and r-centroids for the transition, have been calculated. Bands with v′ > 8 were not observed in fluorescence owing to the onset of predissociation near J′ = 28 of the v′ = 8 level. An upper limit for the ground state dissociation energy is D0″ (BrF, X1Σ+) ≤ 20 880 cm?1.  相似文献   

13.
The microwave “a” and “c” type spectra of four isotopic species of CH3NHCl in the ground state and of CH3NHCl35 and CH3NDCl35 in the first excited torsional state have been analyzed. From the A-E torsional splittings of the excited state the torsional barrier height has been determined to be V3 = 3710 ± 46 cal/mole. The “c” type transitions show an inversion doubling of 4.60 ± 0.10 MHz in the ground state and of 5.25 ± 0.10 MHz in the first excited torsional state. Such doublings are independent on the rotational quantum numbers within the experimental errors. The height of the inversion barrier has been roughly evaluated by using the Dennison-Uhlenbeck potential.  相似文献   

14.
The infrared absorption of CD3OH in the OH stretch region has been observed at 0.025-cm?1 resolution. Seventeen excited-state torsion-rotation levels EnτK have been determined with the aid of combination differences and Loomis-Wood diagrams. Of these levels, seven belong to n = 2 and nine to n = 1. No levels for which n = 0 could be determined. Analysis of the observed levels yields a hindering potential barrier in the excited state of 407 cm?1.  相似文献   

15.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10?3 cm?1. The value of the parameter (αB ? αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm?1, B″ = 0.68216(9) cm?1, DJ = 1.10(30) × 10?6 cm?1, αB = (B″ ? B′) = 3.086(7) × 10?3 cm?1, and βJ = (DJ ? DJ) = ?3.24(11) × 10?7 cm?1. A value of αA = (A″ ? A′) = 2.90(5) × 10?3 cm?1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

16.
Doppler-limited, laser-induced fluorescence spectra on the B1Σ+-X1Σ+ (v′ = v″ = 0 and 1) system of MgO have been obtained. The results of the optical analysis were merged with our microwave-optical double-resonance measurements to produce the following set of spectroscopic parameters for the B and X states, where the units are in cm?1, and the uncertainties represent 95% confidence limits: T0.0 = 20003.594(2); B0 = 0.58004(3); D0 = 1.13(2) × 10?6; B0 = 0.57198(3); D0 = 1.20(2) × 106; T1.1 = 20043.423(2); B1 = 0.57528(4); D1 = 1.14(11) × 106; B1 = 0.56674(4); D1 = 1.22(10) × 106.  相似文献   

17.
The parallel band ν6(A2) of C3D6 near 2336 cm?1 has been studied with high resolution (Δν = 0.020 – 0.024 cm?1) in the infrared. The band has been analyzed using standard techniques and the following parameters have been determined: B″ = 0.461388(20) cm?1, DJ = 3.83(17) × 10?7 cm?1, ν0 = 2336.764(2) cm?1, αB = (B″ ? B′) = 8.823(12) × 10?4 cm?1, βJ = (DJ ? DJ) = 0, and αC = (C″ ? C′) = 4.5(5) × 10?4 cm?1.  相似文献   

18.
The infrared spectrum of isotopically enriched CH281BrF was investigated in the ν3 and ν8 region between 1150 and 1370 cm?1 at a resolution of 0.003 cm?1. The ν3 vibration of symmetry species A gives rise to an a-/b-hybrid band with a-type predominance, while the ν8 mode of A symmetry produces c-type absorption. Due to the proximity of the band origins to those of closely lying overtones and combination bands, the v3 = 1 and v8 = 1 levels were found perturbed through Coriolis resonance by the v5 = 2 (A) and v6 = v9 = 1 (A) states, respectively. The spectral analysis resulted in the identification of 3132 transitions (J ≤ 98 and Ka ≤ 14) for the ν3 and 2958 transitions (J ≤ 68 and Ka ≤ 19) for the ν8 bands. The assigned data were fitted using the Watson's A-reduction Hamiltonian in the Ir representation and the perturbation operators. Although no transitions belonging to the perturbers were observed, the band origins and excited state parameters for fundamentals and ‘dark states’ together with coupling terms for the ν3/2ν5 and ν86 + ν9 dyads were determined.  相似文献   

19.
The Fourier transform infrared (FTIR) spectrum of the CO-stretching fundamental band of CD3OH has been recorded at a resolution of 0.002 cm-1. Assignments are reported for 35 subbands in the n = 0 ground torsional state, covering K = 0 to 9 for all torsional symmetries plus K = 10 A, and 12 assorted A and E subbands in the n = 1 first excited torsional state ranging from K = 0 up to K = 5. The subband wavenumbers have been fitted to J(J + 1) power-series energy expansions to obtain subband origins and a compact representation of the spectral observations. With the use of known ground-state energies, CO-stretch energy term values have been determined and tabulated. Least-squares fitting of the subband origins to a fourth-order Hamiltonian model for the CO-stretch mode is discussed.  相似文献   

20.
The microwave spectrum corresponding to the first excited state of the methyl torsion in acetic acid has been identified by means of microwave-microwave double resonance. Although the A-E splittings are extremely large, a reasonable fit has been obtained for the v = 0 and v = 1 states simultaneously by using a Hamiltonian which allows for geometry relaxation upon internal rotation. Barrier parameters are V3 = 169.90 ± 0.06 cm?1 and V6 = ?6.74 ± 0.02 cm?1. An interpretation of the parameters describing nonrigidity is given in terms of a model with two relaxing bond angles, which is qualitatively supported by ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号