首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
涡轮叶片内冷通道高性能肋流动与传热   总被引:1,自引:0,他引:1  
涡轮叶片内部冷却通道内壁面布置扰流肋是一种高效的强化传热措施.本文在8500~60000雷诺数范围内,对直肋、斜肋、V肋和W肋开展实验研究,得到了四种肋的换热和流阻特性.实验结果表明:1)W肋具有最高的平均努塞尔数,是光滑通道充分发展流动传热性能的2.2~2.6倍,其次是V肋和直肋,而斜肋的传热性能最低,约是光滑通道的1.7倍;2)W肋表现出最大的流阻性能,是光滑通道的2.5~3.7倍,其次是V肋和直肋,而斜肋流阻最小,约为光滑通道的1.8~2.5倍。W肋具有最优的综合热性能,而直肋的综合热性能最低。另一方面,本研究还通过瞬态液晶热像技术获得了W肋表面详细局部传热分布,实验结果表明W肋中间的顶点迎风区域是强换热区,该区域与气流相互作用,热边界层较薄,有效强化了换热能力。  相似文献   

2.
中压下三维内翅管中的上升流动与传热   总被引:1,自引:0,他引:1  
对中压下水在垂直三维内翅管中强制上升流动时的流阻与传热性能进行了试验研究。试验压力为33×10~5—41×10~5Pa,雷诺数Re=4×10~4—2×10~6。建立了流阻与传热关联式,并与光滑管和其它典型强化传热管进行了比较。结果表明,试验用三维内翅管具有优良的热力特性。有很高的推广应用价值。  相似文献   

3.
本文针对不同压力条件下不同换热表面结构的毛细结构蒸发器气(?)液相变传热特性进行了实验研究。选取微槽道结构和烧结丝网结构的换热表面分别在蒸发压力为0.86×10~5 Pa、0.91×10~5 Pa、0 96×10~5 Pa、1.0×10~5 Pa、1.5×10~5 Pa、2.0×10~5 Pa条件下进行了传热特性研究并对其实验结果进行对比,结果表明,压力对换热系数有重要的影响,当压力范围为0.86×10~5~1.0×10~5 Pa时,在过热度相同的条件下,随着压力的增加,换热系数呈上升趋势;在较大压力的条件下,换热系数随着过热度的增加呈先升后降的趋势。  相似文献   

4.
三维内肋管内插入螺旋扭带的强化传热实验   总被引:4,自引:0,他引:4  
本文分别以水和乙二醇为工质,在Re数范围为:600~40000,Pr数范围为:5.5~110之间,对四根分别插入三种不同扭率螺旋扭带的三维内助管内的换热和流阻特性进行了实验研究。结果表明:三维内肋管内加装扭带的强化传热技术适用于低Re数下高Pr数工质的管内对流换热强化。根据实验值得到了流阻和换热关联式。  相似文献   

5.
实验和数值研究了不连续双斜内肋管管外的换热性能.在不连续双斜内肋管管外倾斜凹坑的作用下,不连续双斜内肋管和光滑圆管组成的套管内出现了纵向涡流动,雷诺数为30000~90000时比光滑套管换热增强50%,阻力增加60%~70%.  相似文献   

6.
本文对SiC-水纳米流体在3种多孔平行流矩形通道扁管中的流动与换热特性进行了实验研究。第一种扁管是光滑管,另外两种是带有不同间距的微翅片结构的管道。纳米流体的体积分数为0.005%、0.01%和0.1%,Re范围为150~5300。实验结果表明:微翅片结构对纳米流体的流动特性没有明显的影响;微翅片肋片间距对纳米流体的换热特性有一定的影响。微翅片的存在引起纳米流体在微翅片管段的强化程度低于光滑管道。最后,利用性能评价标准对纳米流体的综合性能进行了评定,表明在光滑管中Re≈5100时,0.01%的纳米流体的PEC达到最大值为1.68。  相似文献   

7.
涡轮叶片冷却通道高性能微小肋湍流传热的数值研究   总被引:1,自引:0,他引:1  
为了提高涡轮叶片内冷通道的换热性能,针对分别带有直肋、斜肋、V肋和W肋这四种微小结构肋的冷却通道进行了数值计算并。通道宽高比为6,肋间距与肋高比为10,肋高与水力直径比为0.029。采用低雷诺数AKN k-ε模型研究了雷诺数范围从36700到60000时四种带肋通道的换热与流动特性并与实验结果相比较,发现通道换热性能和压力损失与稳态实验结果较一致。研究表明,W肋换热性能最优,其平均努塞尔数是流动充分发展的光滑通道的2.2到2.4倍,摩擦因子是光滑通道的3.7~4.0倍。其次是V肋、直肋,斜肋最低。分析流场发现直肋下游回流区最大,壁面努塞尔数在横向上较均匀,而斜肋、V肋和W肋因为二次流的存在回流区较小,壁面努塞尔数沿着肋展方向降低。  相似文献   

8.
本文以水蒸汽为工质对水平三维微肋管内凝结换热及阻力特性进行了实验研究.与光管和二维管相比,在相同条件下,实验中效果最好的T3管全长平均凝结换热系数分别提高了113%~410%和20%~65%,同时,与二维管相比流动阻力增加较小,最大值不超过6.3%.比较另两种管型(T1,T2管)也证明三维管以较小的流阻增加为代价换取了明显的强化效果.  相似文献   

9.
横肋变截面U通道内换热特性的实验研究   总被引:1,自引:0,他引:1  
本实验选取航空发动机涡轮叶片中段内部冷却通道为研究对象,对不同肋间距的横肋变截面U型通道的换热特性进行了研究。实验模型中,矩形肋对称布置在上下两个表面,肋高为1.5 mm,肋宽为2 mm,肋与流体流向夹角为90°。实验结果表明,当节距比为10时,通道的平均换热效果最佳,节距比为16.6时,通道的平均换热效果次之,节距比为13.3和20时,通道的平均换热效果相当,且较差。  相似文献   

10.
为探究混合制冷剂R290/R134a(4/6)在水平微肋管中的沸腾传热特性,采用了CFD软件数值模拟的方法,对混合制冷剂R290/R134a(4/6)分别在外径为7 mm,长为500 mm的水平光滑管和微肋管中进行数值模拟与理论分析。分析了质量流量、热流密度,以及干度对混合制冷剂在水平微肋管中换热特性的影响。结果表明:两种管型的沸腾换热系数随质量流量、热流密度和干度的增大出现先增大后减小的趋势;热流密度对制冷剂沸腾换热系数的影响最大,在质量流量保持不变,改变热流密度的条件下,微肋管最大传热系数分别为光滑管的1.30、1.31、1.26倍;质量流量的增加提高了制冷剂的临界干度,光滑管与微肋管最大临界干度分别为0.57、0.63。  相似文献   

11.
采用长×宽×厚为10 mm×10 mm×0.5 mm的硅片来模拟实际芯片散热,通过干腐蚀技术在其表面加工出宽×高分别为50μm×60μm,50μm×120μm的方柱微结构,实验研究了方柱微结构在射流冲击下的流动沸腾换热性能。过冷度为25℃和35℃,横流速度V_c为0.5,1.0,1.5 m/s,喷射速度V_j为0~2 m/s,冷却工质为FC-72。实验结果和同工况下的光滑表面作了对比。结果表明,方柱微结构由于换热面积的增加从而表现出优于光滑表面的强化换热性能,增加过冷度和提高V_c以及V_j都提高了芯片在高热流密度下的换热性能,但随着V_c的增加,射流冲击的强化作用减弱,低流动高喷射的强化效果最为明显。方柱肋片效率随着热流密度的增加而减小,随着V_c(V_j)增加,方柱肋片效率也逐渐下降,但降幅随着V_c的增加而减小。  相似文献   

12.
本文通过热敏液晶瞬态测量技术对狭窄空间内的光滑靶板和带有针肋扰流的表面冲击冷却展开了实验研究,射流Reynolds数范围15000~30000。实验获得了冲击靶板表面高精度的局部Nusselt数分布,通过分析获得了如下结论:1)两种靶板上的横向平均Nusselt数比Nu/(Re~(0.8)Pr~(1/3))变化趋势均几乎不随Re数变化;2)带有针肋的表面冲击冷却其端壁平均传热性能比光滑靶板高约7.0%,压力损失最大提高约17.9%;3)带有针肋的表面冲击靶板上传热驻点的分布与光滑靶板几乎一致,针肋的存在不影响横流导致的射流偏移作用;4)由于针肋显著地增加了冲击冷却系统中的换热面积,因此针肋表面的射流冲击总体传热性能会比光滑表面射流冲击显著提高。  相似文献   

13.
本文对含Solest-120冷冻油的R134a,在饱和温度为5℃和10℃工况下,在水平高效强化管(管E21.为C3型管,管E22为A1型管)管外池沸腾换热进行了实验研究。实验结果表明:与相同管径的光管的换热性能相比,强化管E21、E22的管内传热系数强化倍率分别为3.703和3.035。随着含油浓度的增加,管外池沸腾换热效果得到优化,含油率为1.0×10~(-4)时的管外传热系数比含油5.0×10~(-5)时更高,在实验研究的水流速范围内,在蒸发温度为5℃时增加了3.7%~7.2%,而在蒸发温度为10℃时增加了0.8%~10.9%。从含油R134a的黏度、表面张力等的角度,对含油率高时换热系数大的结论进行了必要的物理解释。研究对开发设计蒸发器有一定实际的指导意义。  相似文献   

14.
水平三维肋管管外凝结换热实验与分析(I实验研究)   总被引:4,自引:0,他引:4  
本文对不同饱和蒸汽温度下R11在水平Thermoexcel-C管的管外凝结换热性能进行了实验研究。实验结果表明:随着饱和蒸汽温度的提高,C管的凝结换热系数下降。C管凝结换热强化的主要机理在于孤立三维齿结构增大了表面张力减薄凝结表面液膜厚度的作用,而C管凝液淹没区小于相同肋间距的低肋管,且在淹没区内的凝结换热大于低肋管。  相似文献   

15.
本文进行了CO_2-水混合蒸气在不锈钢V形纵槽表面进行了凝结换热实验研究。结果表明,CO_2质量浓度在80%~94%范围内,两V形纵槽表面的凝结换热特性均优于光滑平板。1 mm×2 mm纵槽冷凝表面的凝结换热系数比平板提高了8.51%~15.4%。在20%~94%浓度范围内,1 mm×2 mm冷凝特性均优于0.5 mm×1 mm冷凝块,所以适当增加肋片的高度和肋间距在一定程度上可以强化冷凝传热过程。  相似文献   

16.
水平内微肋管局部凝结换热性能实验与数值求解   总被引:1,自引:0,他引:1  
以R11为工质,蒸汽凝结压力为147-265kPa,质量流率4ty153kg/m2s,本文对二维内微肋管和三维内微肋管水平管内凝结分层流区局部换热系数进行了系统的实验。与光管比较,二维内微肋管和三维内微肋管局部凝结换热系数分别提高了147-783%和261-997%。本文首次从理论分析入手建立了二维内微肋管水平管内凝结分层流区局部换热系数分析模型并进行了数值求解。计算结果与本文实验相当吻合。  相似文献   

17.
对椭圆内肋扭曲管的传热与流阻特性进行了数值研究,分析了截面几何尺寸、内肋数n和导程S对传热和流阻特性的影响,并分析了强化传热的机理。结果表明:内肋数n对传热和流阻的影响不明显;导程S和截面尺寸对传热和流阻性能的影响很大,导程S越小,椭圆压扁程度越大,传热效果越好;螺旋内肋进一步强化了对流传热。  相似文献   

18.
进行了柱状微结构表面在添加机械振荡条件下池沸腾换热性能的实验研究。通过干腐蚀技术在硅片表面加工出30μm×60μm、50μm×60μm的方柱微结构,硅片尺寸为10 mm×10 mm×0.5 mm。实验研究了四组芯片,分别为光滑、PF30-60正规、PF30-60交错及PF50-60交错,实验工质为无水乙醇,同时在芯片上方安装振荡装置以达到强化换热的目的。实验结果表明,机械振荡对沸腾换热有强化作用,且在单相对流阶段强化作用尤其显著,同时CHF有20%左右的提高,核态沸腾阶段换热系数有一定增强。另外,所有柱状微结构芯片换热效果都优于光滑芯片,主要归结于换热面积的增加。  相似文献   

19.
R134a在水平三维内微肋管内的沸腾换热   总被引:7,自引:0,他引:7  
本文以 R134a为工质,在外径为 16 mm的两种不同几何结构的水平三维微肋管内进行了沸腾换热实验,研究了质量流率、热流密度、蒸汽干度等因素对沸腾换热系数的影响。与相同工况下的水平光管比较, 1#微肋管的换热强化因子在1.5~2.1之间,2#微肋管的换热强化因子在1.9~2.8之间。两种三维微肋管的比较结果显示,单位内表面积上具有更多的微肋数目的 2#管的平均沸腾换热系数比 1#管增加了 28~43%。  相似文献   

20.
对电子芯片射流冲击强化沸腾换热进行了实验研究。通过干腐蚀技术在硅片表面加工出交错排列30μm×60μm,50μm×60μm,50μm×120μm,30μm×120μm(宽×高)的柱状微结构,硅片尺寸为10 mm×10 mm×0.5mm。实验工质为FC-72,喷射速度V_j分别为0.5,1和1.5 m·s~(-1),喷嘴数目分别为1,4和9,对应的喷嘴直径分别为3,1.5和1 mm,喷嘴出口到芯片表面的距离分别为3,6和9 mm。实验表明,交错排列柱状微结构的换热效果要好于光滑芯片,临界热流密度(CHF)随着喷射速度的增加而增加。在核态沸腾区的整个喷射速度区间内,S-PF30-120的传热系数和CHF都是最高的。同时,对不同的换热方式进行了比较,包括池沸腾,流动沸腾,射流冲击和流动-喷射复合式沸腾换热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号