首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用"时间切片"离子速度成像技术研究了N2O分子在134.20、135.20和136.43 nm波长下的真空紫外光解动力学. 实验中通过采集解离产物O(1SJ=0)的离子影像来研究O(1SJ=0)+N2(X1g+)这一解离通道. 从各个波长下的实验影像可获得产物N2(X1g+)的振动态分辨的结构,进而得到产物的总平动能谱和产物N2的振动态布居. 实验结果表明在实验的光解波长下,产物N2(X1g+)主要布居在v=2和v=3. 此外,还得到了产物N2的振动态分辨的各向异性参数β,从中发现产物N2β值在三个解离波长下均表现出相似的特征,即随着振动量子数的增大,β值从趋近于2逐渐减小至1.4. 这一现象表明低振动态产物是通过一个以平行跃迁解离为主的解离过程产生的,而高振动态的产物来自于一个更加弯曲的中间构型的解离. 此推论与在平动能谱中所见到的最强转动态布居随着振动量子数的增大而出现的位移是相一致的.  相似文献   

2.
利用三维朗之万动力学模拟研究了多价态高分子链在受体平面上的吸附行为。其在受体平面上的吸附具有超选择性,随着高分子链上配体浓度的增大,发生超选择性吸附时的平面受体浓度范围变窄;而超选择性吸附最显著时的平面受体浓度,即最佳平面受体浓度随着链上配体浓度的增大而减小。对处于吸附态的多价态高分子链的构象性质进行了系统地研究,发现链的平衡回转半径Rg及其水平分量Rg},随着平面受体浓度的增大都存在极大值。其平衡回转半径Rg与其链长N间的标度指数表明当平面受体浓度的增大时,处于吸附态的链构象介于二维链构象和三维链构象之间;随着平面受体浓度的进一步增大,吸附在平面上的多价态高分子链发生轻微的塌缩  相似文献   

3.
刘丽丽  蒋成保 《中国物理 B》2011,20(12):127502-127502
The oxidation microstructure and maximum energy product (BH)max loss of a Sm(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous external oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91 × 10-10 cm2/s and 6.54 × 10-11 cm2/s, respectively.  相似文献   

4.
使用密度泛函理论B3LYP和B3P86,以及组态相互作用方法CCSD(T)和QCISD, 利用多个基组对7Li2(X1Σ+g)分子的平衡核间距(Re)、谐振频率(ωe)和离解能(De)进行了计算, 发现在CCSD(T)/cc-PVQZ理论水平下得到的结果(Re相似文献   

5.
在兰州重离子加速器国家实验室分别测量了H+, He2+, Ar11+和Xe20+离子轰击Ta表面过程中辐射的X射线谱, 并得到了Ta特征X射线谱中Mγ (M3N5)和Nαβ (M4,5N6,7)线的强度, 即Iγ和Iαβ. 分析结果表明, 强度比值Iγ/Iαβ 随着入射离子原子序数的增加而显著增加, 这是由于碰撞过程中Ta原子的多电离效应使M3支壳层的荧光产额ω3产生了显著增强.  相似文献   

6.
许增慧  宗福建 《中国物理 B》2011,20(6):63104-063104
Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3P) + D2 (v= 0, j= 0)→OD + D. By running trajectories on the 3A′ and 3A″ potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P(θr) and P(ør) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3P) + H2 (v= 0, j= 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P(θr) and PDDCSs of the 3A′ PES while the opposite on P(ør) of the 3A″ potential energy surface.  相似文献   

7.
增加光子奇偶q相干态的高阶压缩效应   总被引:8,自引:3,他引:5  
张敏  江俊勤 《光子学报》2002,31(12):1435-1438
通过数值计算研究了增加光子奇q相干态aq+m|α>qo和增加光子偶q相干态aq+m|α>qe的高阶压缩效应.结果表明:当q较小时,态aq+m|α>qo和aq+m|α>qe都能呈现出强烈的奇次方阶压缩效应,但无偶次方阶压缩效应,而且奇次方阶压缩随m的增大而增强.当m=0时aq+m|α>qo和aq+m|α>qe为光场振幅偶次幂的最小测不准态,但当m≠0时它们不是光场振幅偶次幂的最小测不准态.  相似文献   

8.
黄永平  曾安平 《光子学报》2014,41(7):818-823
基于广义惠更斯-菲涅尔原理和非Kolmogorov(非K)谱,推导出了厄米-高斯光束在非K大气湍流中传输的束宽、角扩展以及M2因子的解析表达式.数值计算表明,在传输距离比较远(如z≥3 km)时,厄米-高斯光束的束宽、角扩展和M2因子随广义指数参量α的增大而增加直到α=3.11时达到最大值后再随α的增大而减小;随湍流的内尺度l0的减小而增大;随外尺度l0的增加而增大(3.6<α<4).但是当广义指数参量α在3<α<3.6区间取值时,束宽和M2因子几乎不随外尺度的增加而变化.  相似文献   

9.
谭丛兵  钟向丽  王金斌  廖敏  周益春  潘伟 《物理学报》2007,56(10):6084-6089
利用溶胶-凝胶法在Pt/Ti/SiO2/Si(100)衬底上制备了Nd掺杂Bi4Ti3O12(Bi4-xNdxTi3O12, x=0.00,0.30,0.45,0.75,0.85,1.00,1.50)铁电薄膜样品.研究了Nd掺杂对Bi4Ti3O12薄膜的微结构和铁电性能的影响.研究结果表明:Nd掺杂未改变Bi4Ti3O12薄膜的基本晶体结构.在掺杂量x<0.45时,Nd3+只取代类钙钛矿层中的A位Bi3+.当x=0.45时,样品剩余极化强度达最大值,在270kV·cm-1的电场下为32.7μC·cm-2.掺杂量进一步增加时,结构无序度开始明显增大,Nd3+开始进入(Bi2O2)2+层,削弱其绝缘层和空间电荷库的作用,导致材料剩余极化逐渐下降.当掺杂量x达到1.50时,掺杂离子最终破坏(Bi2O2)2+层的结构,材料发生铁电-顺电相变.  相似文献   

10.
Zhang Li  Han Guo-Cai 《中国物理 B》2013,22(2):27803-027803
Novel Dy3+-doped Gd(PO3)3 white light phosphors each with an orthorhombic system are successfully synthesized by solid-state reaction. The luminescence properties of white-light Gd1-x(PO3)3:xDy3+ (0<x≤ 0.25) under vacuum ultraviolet (VUV) excitation are investigated. The strong absorption at around 147 nm in excitation spectrum energy can be transferred to the energy levels of Dy3+ ion from the host absorption. Additionally, the white light phosphor is activated by a single Dy3+ ion. Therefore, the luminescence of Gd1-x(PO3)3:xDy (0<x≤ 0.25) under VUV excitation is effective, and it has the promise of being applied to mercury-free lamp.  相似文献   

11.
温晓会  章林溪  夏阿根  陈宏平 《中国物理 B》2011,20(4):46601-046601
The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond 2 / (Nb2) and the shape factor <δ*> depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity Cv, and the knotted ring chain undergoes gas-liquid-solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains.  相似文献   

12.
The dynamic behaviours of the translocations of closed circular polymers and closed knotted polymers through a nanopore, under the driving of an applied field, are studied by three-dimensional Langevin dynamics simulations. The power-law scaling of the translocation time τ with the chain length N and the distribution of translocation time are investigated separately. For closed circular polymers, a crossover scaling of translocation time with chain length is found to be τ~ N α , with the exponent α varying from α = 0.71 for relatively short chains to α = 1.29 for longer chains under driving force F = 5. The scaling behaviour for longer chains is in good agreement with experimental results, in which the exponent α = 1.27 for the translocation of double-strand DNA. The distribution of translocation time D(τ) is close to a Gaussian function for duration time τ < τ p and follows a falling exponential function for duration time τ > τ p . For closed knotted polymers, the scaling exponent α is 1.27 for small field force (F = 5) and 1.38 for large field force (F = 10). The distribution of translocation time D(τ) remarkably features two peaks appearing in the case of large driving force. The interesting result of multiple peaks can conduce to the understanding of the influence of the number of strands of polymers in the pore at the same time on translocation dynamic process and scaling property.  相似文献   

13.
沈瑜  章林溪 《中国物理 B》2008,17(4):1480-1489
In this paper the influence of a knot on the structure of a polymethylene (PM) strand in the tensile process is investigated by using the steered molecular dynamics (SMD) method. The gradual increasing of end-to-end distance, R, results in a tighter knot and a more stretched contour. That the break in a knotted rope almost invariably occurs at a point just outside the 'entrance' to the knot, which has been shown in a good many experiments, is further theoretically verified in this paper through the calculation of some structural and thermodynamic parameters. Moreover, it is found that the analyses on bond length, torsion angle and strain energy can facilitate to the study of the localization and the size of a knot in the tensile process. The symmetries of torsion angles, bond lengths and bond angles in the knot result in the whole symmetry of the knot in microstructure, thereby adapting itself to the strain applied. Additionally, the statistical property of the force-dependent average knot size illuminates in detail the change in size of a knot with force f, and therefore the minimum size of the knot in the restriction of the potentials considered in this work for a PM chain is deduced. At the same time, the difference in response to uniaxial strain, between a knotted PM strand and an unknotted one is also investigated. The force-extension profile is easily obtained from the simulation. As expected, for a given f, the knotted chain has an R significantly smaller than that of an unknotted polymer. However, the scaled difference becomes less pronounced for larger values of N, and the results for longer chains approach those of the unknotted chains.  相似文献   

14.
We report the results of molecular dynamics simulations of translocation of knotted proteins through pores. The protein is pulled into the pore with a constant force, which in many cases leads to the tightening of the knot. Since the radius of tightened knot is larger than that of the pore opening, the tight knot can block the pore thus preventing further translocation of the chain. Analyzing six different proteins, we show that the stuck probability increases with the applied force and that final positions of the tightened knot along the protein backbone are not random but are usually associated with sharp turns in the polypeptide chain. The combined effect of the confining geometry of the pore and the inhomogeneous character of the protein chain leads thus to the appearance of topological traps, which can immobilize the knot and lead to the jamming of the pore.  相似文献   

15.
The detection of linear polymers translocating through a nanoscopic pore is a promising idea for the development of new DNA analysis techniques. However, the physics of constrained macromolecules and the fluid that surrounds them at the nanoscopic scale is still not well understood. In fact, many theoretical models of polymer translocation neglect both excluded-volume and hydrodynamic effects. We use Molecular Dynamics simulations with explicit solvent to study the impact of hydrodynamic interactions on the translocation time of a polymer. The translocation time τ that we examine is the unbiased (no charge on the chain and no driving force) escape time of a polymer that is initially placed halfway through a pore perforated in a monolayer wall. In particular, we look at the effect of increasing the pore radius when only a small number of fluid particles can be located in the pore as the polymer undergoes translocation, and we compare our results to the theoretical predictions of Chuang et al. (Phys. Rev. E 65, 011802 (2001)). We observe that the scaling of the translocation time varies from τ ∼ N 11/5 to τ ∼ N 9/5 as the pore size increases (N is the number of monomers that goes up to 31 monomers). However, the scaling of the polymer relaxation time remains consistent with the 9/5 power law for all pore radii.  相似文献   

16.
Summary The unmixing transition of both symmetrical polymer blends AB (i.e. chain lengthsN A=N B=N) and asymmetrical ones (N B/N A=2,3) is studied by large-scale Monte Carlo simulations of the bond fluctuation model. Combination of semi-grand-canonical simulation techniques, ?histogram reweighting? and finitesize scaling allows an accurate location of the coexistence curve in the critical region. The variation of the critical temperature with chain length (N) is studied and compared to theoretical predictions. For the symmetrical case, use of chain lengths up toN=512 allows a rough estimation of crossover scaling functions for the crossover from Ising to mean-field exponents. The order-disorder transitions in melts of both symmetric (compositionf=N A/(N A+N B)=1/2) and asymmetric (f=3/4) block copolymers is studied for very short chains (16≤N≤60). The interplay between structure and chain configuration is emphasized. Qualitative evidence for ?dumbell formation? of chains and vacancy enrichment in A-B-interfaces and near hard walls is presented. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

17.
Using Langevin dynamics simulations, we investigate the translocation dynamics of an externally driven polymer chain through a nanopore, where a pulling force F is exerted on the first monomer whilst there is an opposing force F E < F within the pore. Such a double-force arrangement has been proposed recently to allow better dynamical control of the translocation process in order to sequence biopolymers. We find that in the double-force arrangement translocation becomes slower as compared to the case under a single monomer pulling force of magnitude F - F E , but scaling of the translocation time as a function of the chain length ∼ N 2 does not change. The waiting time (m) for monomer m to exit the pore is found to be a monotonically increasing function of the bead number almost until m N , which indicates relatively well-defined slowing down and control of the chain velocity during translocation. We also study the waiting time distributions for the beads in the chain, and characterize in detail fluctuations in the bead positions and their transverse position coordinates during translocation. These data should be useful in estimating position-dependent sequencing errors in double-force experiments.  相似文献   

18.
Scaling laws for Gauss linking number Ca and writhing number Wr for spherically confined flexible polymers with thermally fluctuating topology are analyzed. For ideal (phantom) polymers each of N segments of length unity confined to a spherical pore of radius R there are two scaling regimes: for sufficiently weak confinement (RN 1/3) each chain has |Wr|≈N 1/2, and each pair of chains has average |Ca|≈N/R 3/2; alternately for sufficiently tight confinement (N 1/3R), |Wr|≈|Ca|≈N/R 3/2. Adding segment-segment avoidance modifies this result: for n chains with excluded volume interactions |Ca|≈(N/n)1/2 f(φ) where f is a scaling function that depends approximately linearly on the segment concentration φ=nN/R 3. Scaling results for writhe are used to estimate the maximum writhe of a polymer; this is demonstrated to be realizable through a writhing instability that occurs for a polymer which is able to change knotting topology and which is subject to an applied torque. Finally, scaling results for linking are used to estimate bounds on the entanglement complexity of long chromosomal DNA molecules inside cells, and to show how “lengthwise” chromosome condensation can suppress DNA entanglement.  相似文献   

19.
The effect of electrostatic interactions on the stretching of DNA is investigated using a simple worm like chain model. In the limit of small force there are large conformational fluctuations which are treated using a self-consistent variational approach. For small values of the external force f, we find the extension scales as where is the Debye screening length. In the limit of large force the electrostatic effects can be accounted for within the semiflexible chain model of DNA by assuming that only small excursions from rod-like conformations are possible. In this regime the extension approaches the contour length as where f is the magnitude of the external force. The theory is used to analyze experiments that have measured the extension of double-stranded DNA subject to tension at various salt concentrations. The theory reproduces nearly quantitatively the elastic response of DNA at small and large values of f and for all concentration of the monovalent counterions. The limitations of the theory are also pointed out. Received 13 October 1998 and Received in final form 9 June 1999  相似文献   

20.
We discuss a molecular model of crystallization of a quenched ring polymer of a fixed knot type. Crystallized ring polymers contain not only crystal regions but also amorphous regions consisting of highly entangled chain configurations that could not be obtained simply by folding the polymer chains. In the crystallization process, the growth of a lamella region is accompanied by the reduction of a locally entangled region of the polymer chain. The model should effectively describe the separation and formation processes of amorphous and crystal regions in polymer crystallization. Here, the knot type of an initial configuration of the ring polymer is conserved in time evolution. We find that the average fraction of amorphous regions in the ring chain does not depend on the knot type or the chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号