首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文采用原位核磁共振的方法研究了在真实固-液环境中共催化剂类型以及光照波长对甲醇光催化重整产物及光解水产氢产率的影响.结果发现,不同贵金属担载的锐钛矿型二氧化钛催化剂对甲醇光催化重整产物的产量和产率有着不同程度的影响,但是对其动力学特征影响不大.光照波长对甲醇光催化重整产物的产量也影响较大.通过对比甲醇氧化产率与产氢产率,发现共催化剂的种类对光催化反应速率及氧化还原能力起重要作用,且共催化剂的种类会影响体系氧化和还原能力之间的协同性.  相似文献   

2.
本文利用原位核磁共振技术在真实固液反应环境中对光催化甲醇重整过程进行了研究.研究发现,体系中甲醇重整的液态中间产物主要有四种:HOCH2OH、CH3OCH2OH、HCOOH和HCOOCH3.不同晶型的二氧化钛催化剂会影响这四种产物的生成趋势.随光照时间的增加,上述四种产物的含量均会增加.Pd负载对一级中间产物CH3OCH2OH和HOCH2OH的产率影响较大,其产率为无Pd负载的2~3个数量级;对二级中间产物HCOOCH3和HCOOH的产率影响较小.  相似文献   

3.
本文利用原位核磁共振技术,系统研究了在真实反应体系中反应环境(气氛、压强、气体量等)对甲醇光催化重整反应产物的影响.发现不同气氛对甲醇光催化重整的反应产物有着不同的抑制作用,而环境压强及气体量对于甲醇光催化重整反应产物产率的影响较小.在此基础上,本文进一步讨论了气体在催化剂表面的吸附方式和环境气氛影响甲醇光催化重整反应产物的机理.  相似文献   

4.
本文考察了中低温-甲醇重整互补制氢及其与高温质子交换膜燃料电池(HT-PEMFC)结合的中低温太阳能-甲醇重整互补发电系统,并分析、优化了两供能系统的性能。从动力学性能优化角度,研发了一种适用于甲醇重整制氢反应的新型复合金属氧化物纳米催化剂,并测试了不同反应物体积流量与反应温度下的催化剂性能。基于动力学实验结果,模拟了太阳能-甲醇重整互补供能系统的性能。模拟结果显示,在太阳直射辐照强度为1000 W·m-2、反应物体积流量为1.70 mL·min-1时,采用新型纳米催化剂的互补制氢系统太阳能制氢效率与能量利用总效率分别为52.5%与87.5%,比采用铜锌铝商业催化剂的系统提高了12.4个百分点和3.3个百分点。如将重整产物气用于高温质子交换膜燃料电池发电,则太阳直射辐照强度为10000 W·m-2、反应物体积流量为1.75 mL·min-1时,中低温太阳能-甲醇重整互补发电系统太阳能净发电效率(40.9%)比应用商业催化剂的系统提高10.4个百分点。  相似文献   

5.
针对甲醇蒸汽的微通道重整催化反应过程,建立化学热力学-物理-数学模型,利用数值模拟分析,分别从Pd/ZnO催化剂下的单速率模型和Zn_Cr/CeO_2/ZrO_2催化剂下的双速率模型考察操作条件对甲醇水蒸气重整制氢输运规律的影响,发现微通道反应器以其高面体比促进了甲醇转化率和氢气产率的提高,且有助于反应器内温度分布均匀;对不同的操作条件下甲醇的转化效果进行分析比较,可为实际操作参数的选取提供参考。  相似文献   

6.
通过甲醇-水蒸汽化学反应,本文提出中低温太阳热能与甲醇重整反应结合的制氢新方法,探讨了中低温太阳热能与甲醇重整制氢过程的能量转换机理,分析了不同压力条件下的水碳比、反应温度对中低温太阳热能-甲醇重整制氢的影响规律.研究结果表明:集热180~240 ℃的低品位太阳热能(品位为0.34~0.42)将能更好地与甲醇重整反应所需的品位相匹配.在反应压力为1×1.01325×105 Pa,反应产物中H2浓度可有望达到72%~75%,中低温太阳热能转化为化学能占燃料化学能的份额可达12%.该研究为低能耗制取清洁燃料氢提供了一条新途径.  相似文献   

7.
为了解决重整器吸热的问题,将催化燃烧反应耦合在反应器内,重整反应的热量由燃烧反应供给,这种耦合反应器可以提高系统热效率。但是由于两种反应的化学反应速率不同,吸放热反应的匹配程度影响着制氢效率。加强过程耦合,研究催化燃烧腔与重整腔之间热量匹配才能制造出结构紧凑、能效高的集成反应器。针对这个问题,本文展开了相关实验研究,探究了两个反应腔在不同的流动方向以及催化燃烧腔不同的壁面涂覆方式下最佳的耦合方案,结果表明:无论选用哪种集成方式,应保证重整器前段的温度高,壁面温度均匀;其中,垂直布置方式具有较大的优势,产氢含量可以达到74%以上;当催化燃烧腔使用泡沫金属作为催化剂载体时产氢含量可以达到60%以上。  相似文献   

8.
本文提出了太阳能光伏电池与甲醇中低温重整反应相结合的发电系统;通过太阳能的梯级利用以及物理能与化学能之间的品位耦合,太阳能净发电效率较单一光伏或甲醇热化学发电方式获得显著提升。热力学分析表明,在100~250℃C的系统运行温度范围内,系统的理论太阳能净发电效率达43.6%~44.3%(已考虑光学损失),显著高于光伏系统(22.5%)及热化学系统(32.7%)。系统约50%的太阳净发电量来自甲醇重整产物氢气,以化学能形式实现了太阳能的高效储能,且光伏、热化学发电随温度变化的相反趋势间互补达到了稳定输出的效果。此外,系统产生的电能中约25%来自太阳能,高于单一太阳能甲醇热化学发电系统的14%,对化石能源的依赖度降低。光伏与热化学互补发电为太阳能高效综合利用提供了新的思路。  相似文献   

9.
在柴油甲醇双燃料发动机排放污染物的基础上,利用合成气台架探究不同催化剂体系对甲醇催化NO反应的影响。结果表明在低温阶段(小于300℃)甲醇在Mo/γ-Al_2O_3催化剂体系上对NO催化转化效率最高,高温阶段(大于300℃)甲醇在Co/γ-Al_2O_3和γ-Al_2O_3催化剂体系上对NO的催化效率高。催化剂体系Co/γ-Al_2O_3(前)+Mo/γ-Al_2O_3(后)催化活性优于单独使用的两种催化剂。配气中的CO会使组合式催化剂体系低温阶段的催化活性大大降低,而H_2则可以使组合式催化剂体系的低温催化活性提高。  相似文献   

10.
应用圆二色谱、内源荧光和外源荧光探针研究了丝素蛋白在甲醇-水混合溶剂中的构象变化及机理。结果显示,在浓度低于30%(V/V)的甲醇-水混合溶剂中,处于无规卷曲状态的丝素蛋白可以通过疏水相互作用形成小的疏水区域,随着甲醇浓度的增加,丝素蛋白发生由无规卷曲向β-折叠的构象转变,削弱了疏水侧链的相互作用。分析表明,丝素蛋白的构象变化与溶剂体系的微观结构密切相关,其稳定性主要由肽键单元与混合溶剂中的分子簇之间的相互作用决定。低浓度的甲醇-水混合溶剂保持水固有的氢键结构,对丝素蛋白肽键单元的溶剂化和丝素蛋白构象的影响较小,而随着甲醇浓度的增加,溶剂结构出现由四面体结构的水分子簇向链状结构的甲醇分子簇的转变,丝素蛋白通过形成分子内氢键减少肽键单元与溶剂分子的接触,从而引发丝素蛋白的构象转变。  相似文献   

11.
本文利用固定床反应器考察了自制催化剂在生物油水溶性组分重整制氢反应中的表现以及耦合水蒸气预处理的CO2吸收剂对反应的影响。通过比较自制催化剂与商业催化剂Z417在重整反应中的催化性能,以及预处理吸收剂对重整反应的改进作用,结果表明:在反应温度为800℃,水油比为4.9的条件下,自制催化剂Ni/CeO2-ZrO2的氢产率...  相似文献   

12.
本文提出了一种新颖的甲醇重整–化学链发电制氢联产系统。该系统利用化学链燃烧氧化反应的显热给甲醇重整制氢部分提供反应热,充分利用了甲醇重整制氢的驰放气,同时实现了Fe_2O_3高温热的合理利用,使新系统内部能量品位的匹配变得更加合理。重整反应部分温度为250℃左右时,该新型联产系统的效率达到了61.8%,展现出了良好的热力学性能。本文对该系统进行了分析,并以常规制氢和化学链燃烧耦合发电系统为参照进行了对比,研究了其性能。新系统的效率较高,同时实现了CO_2的无能耗分离。  相似文献   

13.
利用浸渍方法制备的Ni/HZSM-5催化剂在生物油低温水蒸汽重整合成中表现了较高的催化活性. 探讨了催化剂的组成、重整温度、水碳比例对重整过程的影响.在电催化重整研究中,发现催化剂上通过的电流可以显著地促进生物油水蒸汽重整.通过对不同负载量的Ni/HZSM-5催化剂和Ni20/Al2O3催化剂的催化活性的比较,NiO在催化剂中负载量为20%(Ni20/ZSM)时表现出了最高的催化活性; 即使在450 oC时, 在Ni20/ZSM催化剂上也可以达到碳转化率接近完全, 氢气产率约为90%的效果. 利用XRD、ICP/AES、H2-TPR、BET等表征手段对Ni/HZSM-5催化剂的形态和结构进行了表征.  相似文献   

14.
针对太阳能甲醇重整制氢系统的数值研究,以往受限于网格划分和计算资源,多采用假设均匀的多孔介质模型,但难以准确描述微观结构下的多组分热-质传输和化学反应过程。本文结合催化剂颗粒床模型和多孔介质模型各自优势,建立了基于实际催化剂颗粒床孔隙率分布的太阳能甲醇重整制氢系统三维综合数值模型,并将计算结果与传统模型进行对比,发现孔隙率分布对系统性能有着较大的影响,而本文所建的基于实际孔隙率分布的模型更接近于系统真实情况。基于此,本文进一步考察了催化剂颗粒尺寸和运行参数对整个系统流动传热和化学反应综合性能的影响规律。  相似文献   

15.
一种组合了合成气在线调整和甲醇合成的双段床反应器,成功应用于由生物油重整得到的富CO2合成气的高效合成甲醇.在前段催化床反应器内,富含CO2的原始生物质合成气在CuZnAlZr催化剂的催化作用下可以有效地转化为含CO的合成气.经过450 oC的合成气在线调整之后,CO2/CO的比率由6.3大幅降至1.2.经过调整后的生物质基合成气在后段催化床反应器内由工业CuZnAl催化剂催化合成甲醇,当反应条件为260 oC 和5.5 MPa时得到每小时每kg催化剂的最大甲醇  相似文献   

16.
本文结合核磁共振(NMR)、动态光散射(DLS)和透射电子显微镜(TEM)等表征方法,对自主合成的聚阴离子型温敏嵌段共聚物—聚(苯乙烯磺酸钠)-b-聚(N-异丙基丙烯酰胺)(PSSS50-b-PNIPAM300)在纯水、水/甲醇以及水/丙酮三种溶剂中的温度响应性和自组装行为进行了系统研究.结果发现PNIPAM链段在水/丙酮以及水/甲醇二元溶剂中的临界溶解温度(LCST)比在纯水溶液中略低,而在水/丙酮体系中的塌缩程度却明显低于纯水和水/甲醇体系.同时,PSSS50-b-PNIPAM300在不同溶剂体系中的聚集形貌也存在显著差异,表明加入有机溶剂小分子可以有效地调控温敏嵌段共聚物在水溶液中的自组装过程和聚集形貌.  相似文献   

17.
C12A7-Mg催化剂水蒸汽重整生物油、石脑油和CH4制氢   总被引:6,自引:0,他引:6  
利用自制的C12A7-Mg催化剂,研究了催化水蒸汽重整生物油、石脑油和CH4制备氧气的性能,以及催化剂寿命,并用X射线光电子能谱对催化剂进行了表征.温度测试范围为250-850℃.对于催化水蒸汽重整生物油反应,在750℃时,氢气产率最大达到80%,碳的转化率接近95%.在相同的反应温度下,催化水蒸汽重整石脑油和CH4的氢气产率和碳的转化率要低于重整生物油反应.催化剂的失活主要是由于重整过程中的积碳.  相似文献   

18.
采用等体积浸渍法制备了一系列负载型Ni基催化剂,利用XRD、H2-TPR、NH3-TPD 等技术表征了催化剂的理化特性,考察了载体(CMK-3、SiO2ZrO2、MgO、Al2O3)、助剂(Cu、Ce、Fe)对Ni基催化剂理化特性的影响,测试了230 oC、0.1 MPa冷压下催化剂对邻甲酚原位加氢反应的性能.结果表明,在负载型镍基催化剂作用下,甲醇水相重整制氢反应可以与邻甲酚的原位加氢反应相耦合;以CMK-3为载体的催化剂活性明显优于其他三种载体,邻甲酚的转化率为45.35%;助剂的添加对催化剂性能影响显著,Fe 的引入使原位加氢体系的转化率降至40.49%,助剂Ce、Cu的加入提高了Ni/CMK-3催化剂的原位加氢反应性能,转化率分别提高至64.6%、66.8%,Cu的添加改变了产物的分布,在产物中出现了新产物甲苯;同时探讨原位加氢反应路径及反应机理.  相似文献   

19.
甲醇制烯烃过程是由非石油路线生成低碳烯烃的重要途径之一.分子筛因具备独特的孔结构和可调变的酸性质,而成为甲醇制烯烃过程的核心催化剂.固体核磁共振(NMR)是鉴定物质结构、阐释催化反应机理的强有力的工具,在甲醇制烯烃的研究中被广泛应用.本文主要总结了近年来利用原位固体NMR、多维多核NMR、脉冲梯度场NMR等固体NMR技术研究甲醇制烯烃反应机理取得的重要进展.原位固体NMR可以在真实反应条件下监测催化反应中反应物、中间体和产物的动态演变过程;多维多核NMR可以在不破坏催化剂结构情况下确定反应中间体结构信息,特别是129Xe NMR可以很灵敏探测反应中催化剂的孔道结构变化;脉冲梯度场NMR可用于测定孔道内分子的扩散系数,阐明分子筛的扩散机制.  相似文献   

20.
本文提出一个针对直接甲醇燃料电池膜及阴极的二维、多组分稳态数学模型.模型根据直接甲醇膜燃料电池膜及阴极运行工况特性,考虑质量、动量、组分守恒以及电池中的电化学过程而建立,并应用了计算流体动力学(CFD)技术.模拟结果表明传质对直接甲醇燃料电池的性能影响很大;本文还进行了直接甲醇燃料电池阴极水管理的初步探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号