首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于电磁超表面的透镜成像技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
范庆斌  徐挺 《物理学报》2017,66(14):144208-144208
电磁超表面属于超材料的一种,是由许多亚波长纳米结构单元组成的二维功能性平面结构.根据惠更斯原理,超表面阵列可以任意调控光波的相位、振幅和偏振.与传统器件相比,基于这种超材料设计的光学功能器件最大的优势是其具有极薄的厚度.本文首先介绍了广义斯涅耳定律以及纳米单元结构调控相位的基本原理,重点归纳了电磁超表面在透镜成像技术方面的研究进展,包括等离子体超表面、全介质超表面以及金属/介质混合式超表面在成像方面的应用,最后指出了超表面在成像方面尚未解决的前沿问题以及与实际应用接轨的重要问题,希望能为以后的深入研究提供一定的参考和借鉴.  相似文献   

2.
Metasurfaces, which are planar arrays of subwavelength artificial structures, have emerged as excellent platforms for the integration and miniaturization of electromagnetic devices and provided ample possibilities for single-dimensional and multi-dimensional manipulations of electromagnetic waves. However, owing to the limited interactions between planar thin metallic nanostructures and electromagnetic waves as well as intrinsic losses in metals, metasurfaces exhibit disadvantages in terms of efficiency, controllability, and functionality. Recent advances in this field show that few-layer metasurfaces can overcome these drawbacks. Few-layer metasurfaces composed of more than one functional layer enable more degrees of design freedom. Hence,they possess unprecedented capabilities for electromagnetic wave manipulation, which have considerable impact in the area of nanophotonics. This article reviews recent advances in few-layer metasurfaces from the viewpoint of their scattering properties.The scattering matrix theory is briefly introduced, and the advantages and drawbacks of few-layer metasurfaces for the realization of arbitrary scattering properties are discussed. Then, a detailed overview of typical few-layer metasurfaces with various scattering properties and their design principles is provided. Finally, an outlook on the future directions and challenges in this promising research area is presented.  相似文献   

3.
超表面具有亚波长尺度下精密高效的光波操控能力,但在其单独实现主动式调控方面,目前仍有诸多技术困难亟待克服。液晶与超表面的结合有望发挥各自的长处,实现一种分辨率高、衍射角大、超紧凑的新型主动式光调控器件。以液晶与超表面两部分功能设计的独立与否作为分类依据,回顾了近年来主动式液晶超表面的研究进展,具体包括液晶波片与偏振敏感超表面结合、液晶环境与共振型超表面结合、液晶与超表面光学性质互补等。最后对主动式液晶超表面所面临的挑战以及发展前景进行了讨论和展望。  相似文献   

4.
Metasurfaces and structured light have rapidly advanced over the past few years, from being paradigms to forming functional devices and tailoring special light beams for wide emerging applications. Here, we focus on harnessing metasurfaces for structured light manipulation. We review recent advances in shaping structured light by metasurfaces on different platforms(metal, silica, silicon, and fiber). Structured light manipulation based on plasmonic metasurfaces, reflection-enhanced plasmonic metasurfaces, metasurfaces on fiber facets, dielectric metasurfaces, and sub-wavelength structures on silicon are presented, showing impressive performance.Future trends, challenges, perspectives, and opportunities are also discussed.  相似文献   

5.
郝潇潇  王真  赵志高  沈敏 《应用声学》2021,40(6):904-910
以广义斯奈尔定律为理论依据,对五模声学超表面定向反射的基本原理进行了解析推导和理论分析,获得了五模超表面的理想连续物性参数分布,并给出了五模超表面尺寸设计准则;然后将超表面离散,获得离散单胞的密度和体积模量,并以此为目标进行五模微结构设计,采用均匀化理论计算微结构的等效物性参数;最后,进行了水下声场的声波定向反射调控仿真实验,研究了入射波频率对超表面定向反射性能的影响,仿真结果展现了五模超表面宽频有效的声波调控能力以及调控的可靠性和准确性。本文的研究工作为五模声学超表面的设计和物理实现提供理论指导。  相似文献   

6.
Wen-Yu Li 《中国物理 B》2022,31(10):108701-108701
The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturization and integration of metasurface devices. However, these devices work typically under a low efficiency and narrow bandwidth condition. In this work, we design eight multilayered unit cells with similar amplitudes and a phase interval of π/4, which convert the polarization states of the terahertz (THz) waves between two orthogonal directions. The average cross-polarized transmission amplitudes of these cells are all around 0.9 in an ultra-broad frequency range from 0.5 THz to 1.4 THz. Furthermore, unit cells are used to construct both an ultra-thin anomalous refraction metalens and a vortex phase plate. Our simulation results show that the anomalous refraction for the transmitted linear polarization component is comparable to the theoretical prediction, and the maximum error is determined to be below 4.8%. The vortex phase plate can also generate an ideal terahertz vortex beam with a mode purity of 90% and more. The distributions of longitudinal electric field, intensity, and phase illustrate that the generated vortex beam has excellent propagation characteristics and a weak divergence. Simulations of the two types of metasurface devices, based on the eight unit cells, exhibit very high efficiencies in a wide bandwidth. Our research will assist in the improvement in the practical applications of metasurfaces. It also provides a reference for the design of high efficiency and broadband devices that are applied to other frequency ranges.  相似文献   

7.
In this paper,we experimentally demonstrate ultrafast optical control of slow light in the terahertz(THz) range by combining the electromagnetically induced transparency(EIT) metasurfaces with the cut wire made of P~+-implanted silicon with short carrier lifetime.Employing the optical-pump THz-probe spectroscopy,we observed that the device transited from a state with a slow light effect to a state without a slow light effect in an ultrafast time of 5 ps and recovered within 200 ps.A coupled oscillator model is utilized to explain the origin of controllability.The experimental results agree very well with the simulated and theoretical results.These EIT metasurfaces have the potential to be used as an ultrafast THz optical delay device.  相似文献   

8.
Guangzhou Geng 《中国物理 B》2022,31(12):124207-124207
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spin-controlled nanophotonic devices. However, realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase, which reduces the flexibility in various applications. Here, we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response. The metasurface consists of an array of dielectric nanofins, where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces, which enables to break the conjugated characteristic of phase gradient. Thanks to the superiority of the phase modulation ability, when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm, the left-handed circular polarization (LCP) light exhibits an anomalous refraction angle of 28.9°, while the right-handed circular polarization (RCP) light transmits directly. The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities, especially with metasurfaces in a compact space.  相似文献   

9.
Many applications of metasurfaces require an ability to dynamically change their properties in the time domain. Electrical tuning techniques are of particular interest, since they pave a way to on-chip integration of metasurfaces with optoelectronic devices.In this work, we propose and experimentally demonstrate an electro-optic lithium niobate(EO-LN) metasurface that shows dynamic modulations to phase retardation of transmitted light. Quasi-bound states in the continuum(QBIC) are observed from this metasurface. By applying external electric voltages, the refractive index of lithium niobate(LN) is changed by Pockels EO nonlinearity, leading to efficient phase modulations to the transmitted light around the QBIC wavelength. The EO-LN metasurface developed in this study opens up new routes for potential applications in the field of displaying, pulse shaping, and spatial light modulating.  相似文献   

10.
邓俊鸿  李贵新 《物理学报》2017,66(14):147803-147803
在线性光学范畴内,人们已经通过亚波长尺度的超薄超构表面成功实现了对光的众多新颖特性的调控功能.其主要理念是通过对具有亚波长尺度且空间方向变化的超构功能基元进行特定的排列,从而实现对光的偏振、相位和振幅的有效控制.近来,超构表面上的非线性光学特性也引起了大家的广泛关注.在本综述中,我们对非线性光学超构表面的设计、超构功能单元的材料和对称性选择、非线性手性光学、非线性贝里几何相位和非线性波前整形等内容进行了总结;最后对非线性光学超构表面在调控光与物质的相互作用中面临的挑战和前景进行了展望.  相似文献   

11.
易煦农  李瑛  凌晓辉  张志友  范滇元 《物理学报》2015,64(24):244202-244202
探讨了光在Metasurface中的自旋-轨道相互作用, 理论分析了Metasurface 对圆偏振和线偏振光的转换. 结果表明: 光与具有空间非均匀性和各向异性性的Metasurface的相互作用导致了自旋-轨道角动量的耦合. 采用Metasurface与螺旋相位片组合在一起进行了验证实验, 所得实验结果与理论分析完全一致. 这些结论有助于我们更加深入理解Metasurface 对光的操控.  相似文献   

12.
Nonlinear plasmonic metasurfaces are compatible with complementary metal oxide semiconductor technology and highly promising for on-chip optical switching and modulations and nanoscale frequency conversions. However, the low nonlinearoptical response of metasurface devices limits their practical applications. To circumvent this constraint, we propose the design of a nanocavity plasmonic metasurface, in which the strong light localization in the nanocavity can be used to boost the efficiency of second-harmonic generation. Compared with the single-layer counterpart, experimental results show that the intensity of the second-harmonic waves in the nanocavity metasurface is enhanced by ~790 times. The proposed nanocavity plasmonic metasurfaces in this work may open new routes for developing highly efficient nonlinear metacrystals for on-chip nonlinear sources,nonlinear image encryption, information processing, and so on.  相似文献   

13.
Phase carried by two orthogonal polarizations can be manipulated independently by controlling both the geometric size and orientation of the dielectric nanopost. With this characteristic, we demonstrate a novel multifunctional metasurface, which converts part of the incident linearly polarized light into its cross-polarization and encodes the phase of the two orthogonal polarizations independently. A beam splitter and a bifocal metalens were realized in a single-layer dielectric metasurface by this approach. We fabricated the bifocal metalens and demonstrated that two focal spots in orthogonal polarizations can be separated transversely or longitudinally at will. The proposed approach shows a new route to design multifunctional metasurfaces with various applications in holography and three-dimensional display.  相似文献   

14.
Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produce devices that possess exceptionally high efficiencies. In this report, we theoretically analyze the physical mechanisms enabling high efficiency in freeform‐based periodic metasurfaces, i.e., metagratings. An in‐depth coupled mode analysis of ultra‐wide‐angle beam deflectors and wavelength splitters shows that the extraordinary performance of these designs originates from the large number of propagating modes supported by the metagrating, in combination with complex multiple scattering dynamics exhibited by these modes. We also apply our coupled mode analysis to conventional nanowaveguide‐based metagratings to understand and quantify the factors limiting the efficiencies of these devices. We envision that freeform metasurface design methods will open new avenues towards high‐performance, multi‐functional optics by utilizing strongly coupled nanophotonic modes and elements.  相似文献   

15.
The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.  相似文献   

16.
It is shown that oscillators using nearly degenerate parametric conversion or four-wave mixing in the phase conjugation geometry generate pairs of highly correlated photons. The intensity difference of the two corresponding light beams is then expected to be below the shot noise limit. This property can be used to produce intensity stabilized light beams below the quantum limit. The phases of the twin beams also exhibit interesting correlation properties which will be discussed. Moreover, the combination of the twin beams gives a squeezed state, which has been observed by other authors when the device is below the oscillation threshold. We will describe preliminary results of experiments performedabove oscillation threshold.  相似文献   

17.
We propose all‐dielectric metasurfaces that can be actively re‐configured using the phase‐change material Ge2Sb2Te5 (GST) alloy. With selectively controlled phase transitions on the composing GST elements, metasurfaces can be tailored to exhibit varied functionalities. Using phase‐change GST rod as the basic building block, we have modelled metamolecules with tunable optical response when phase change occurs on select constituent GST rods. Tunable gradient metasurfaces can be realized with variable supercell period consisting of different patterns of the GST rods in their amorphous and crystalline states. Simulation results indicate a range of functions can be delivered, including multilevel signal modulating, near‐field coupling of GST rods, and anomalous reflection angle controlling. This work opens up a new space in exploring active meta‐devices with broader applications that cannot be achieved in their passive counterparts with permanent properties once fabricated.

  相似文献   


18.
电磁超表面由于其独特的电磁特性为调控电磁波提供了有力工具,合适地设计成编码、随机、相位不连续、完美吸收器等超表面,就能够控制电磁波的散射以及反射特性,实现雷达散射截面的缩减。本文综述了不同的电磁超表面利用漫反射或者吸收等特性实现在微波和太赫兹波段雷达散射截面缩减中的应用。分析表明,编码超表面由不同的数字单元组成,其反射相位差在很宽的频段范围内满足恒定的关系,设计特殊的单元序列使入射的电磁波产生非定向散射,更高bit编码超表面更容易灵活调控电磁波;随机超表面通过调节阵元的尺寸实现宽带移相从而将金属目标特征性强的反射峰打散成一个无规律、杂乱的波,产生漫反射;不连续超表面由于相位不连续可使电磁波发生漫反射或者异常反射;吸收器通过合理设计结构尺寸实现吸收电磁波能量来减小反射。因此电磁超表面在雷达隐身、宽带通讯、成像等方面具有重要的应用前景。最后对电磁超表面在雷达散射截面缩减中应用的发展趋势进行了初步探讨,未来将向着宽带、柔性、大角度等方面发展。  相似文献   

19.
Ning Zhang 《中国物理 B》2022,31(7):74212-074212
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They achieve the effect of focusing through phase control under a subwavelength scale, and are called metalenses. They are poised to revolutionize optics by enabling complex low-cost systems. However, there are severe monochromatic aberrations in the metasurfaces. In this paper, the coma of the long-wave infrared optical system is eliminated through a single-layer metasurface. By changing the phase function, this metalens has a numerical aperture of 0.89, a focal length of 150 μm and a field of view of 120° (0.4@60 line pairs/mm) that enables diffraction-limited monochromatic imaging along the focal plane at a wavelength of 10.6 μm. The designed metasurface maintains a favorable value of the modulation transfer function at different angles. This equipment can be widely used in imaging and industrial processing.  相似文献   

20.
We propose and investigate a class of structural surfaces (metasurfaces). We develop the perturbation theory and the effective medium theory to study the thermal properties of the metasurface. We report that the coefficient of temperature-dependent (nonlinear) item in thermal conductivity can be enhanced under certain conditions. Furthermore, the existence of nonlinear item helps to generate high-order harmonic frequencies of heat flux in the presence of a heat source with periodic temperature. This work paves a different way to control and manipulate the transfer of heat, and it also makes it possible to develop nonlinear thermotics in the light of nonlinear optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号