首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to describe high-frequency damping mechanisms of ferromagnetic films by means of the imaginary part of the frequency-dependant permeability, CMOS compatible ferromagnetic Fe36Co44Hf9N11 films were deposited by reactive r.f. magnetron sputtering on oxidised 5×5 mm2×380 μm (1 0 0)-silicon substrates with a 6-in. Fe38Co47Hf15 target, as well as magnetic field annealing between 300 and 600 °C. An in-plane uniaxial anisotropy of around 4.5 mT as well as an excellent soft magnetic behaviour with a saturation polarisation of approximately 1.4 T could be observed after heat treatment at the above-mentioned temperatures, which drives these films to a high-frequency suitability. Ferromagnetic resonance frequencies of approximately up to 2.4 GHz could be obtained. The frequency-dependant permeability was measured with a broadband permeameter. Depending on the heat treatment, an increase of the full-width at half-maximum (FWHM) of the imaginary part of the frequency-dependant permeability is discussed in terms of two-magnon scattering, anisotropy-type competition and local resonance generation through predominant grain growth causing magnetisation and anisotropy inhomogeneities in the magnetic films. The grain size of the films was determined by (HRTEM) imaging and amounts from a few nanometres for films heat treated at 300 °C to more than 10 nm at 600 °C where the FWHM Δfeff and the Landau–Lifschitz–Gilbert equation damping parameter αeff increases with dnm2 and dnm (e.g. dnm is the grain diameter of the nonmagnetic Hf–N phase), respectively.  相似文献   

2.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

3.
Nd–Fe–B-type hard phase single layer films and nanocomposite Nd28Fe66B6/Fe50Co50 multilayer films with Mo underlayers and overlayers have been fabricated on Si substrates by rf sputtering. The hysteresis loops of all films indicated simple single loops for fixed Nd–Fe–B layer thickness (10 nm) and different FeCo layer thickness (dFeCo=1–50 nm). The remanence of these films is found to increase with increasing dFeCo and the coercivity decrease with increasing dFeCo. It is shown that high remanence is achieved in the nanocomposite multilayer films consisting of the hard magnetic Nd–Fe–B-type phase and soft magnetic phase FeCo with 20 nm?dFeCo?3 nm. The sample of maximum energy product is 27 MG Oe for dFeCo=5 nm at room temperature. The enhancement of the remanence and energy products in nanocomposite multilayer films is attributed to the exchange coupling between the magnetically soft and hard phases.  相似文献   

4.
NiZn ferrite films with well-defined spinel crystal structure were in situ fabricated by radio frequency magnetron sputtering at room temperature. The microstructures and static magnetic properties of the films’ dependence on the partial pressure ratio of argon to oxygen gas were investigated. Scanning electron microscope images indicated that all the films consisted of particles nanocrystalline in nature and the sizes increase as the ratio increases in the range of 10-25 nm. A large saturation magnetization (237.2 emu/cm3) and a minimum of coercivity (68 Oe) were obtained when the ferrite film was deposited in the ratio of 4:1. The complex permeability values (μ = μ−iμ″) of the film were measured at frequency up to 5 GHz. It was shown that the film exhibited a large real part of permeability μ′ of 18 and a very high resonance frequency fr of 1.2 GHz. The results suggested that the NiZn ferrite film as-deposited in the ratio of 4:1 may be promised as magnetic medium in the application of integrated circuits operating at microwave frequencies.  相似文献   

5.
We have carried out X-ray absorption measurements with its magnetic circular dichroism (MCD) of perpendicular magnetic films of DyxCo100−x (15?x?33) at Dy M4,5 and Co L2,3 absorption edges to investigate electronic and spin states of the Dy 4f and Co 3d states, respectively. The replacement of major spin between Dy 4f and Co3d is clearly observed in the spectra between 20?x?25. The expected values of the orbital angular moment ∣〈Lz〉∣ of Dy 4f were estimated to be 1.4-0.8 μB while that of Co 3d was estimated to be around 0.2 μB.  相似文献   

6.
By spin-spray ferrite plating, an aqueous process, we prepared ZnxFe3−xO4 (0?x?0.97) films at 90 °C on polyimide and glass substrates, on which complex permeability (μ=μ′–jμ″) was measured. As Zn content x increases from 0 to 0.70 static permeability, μs, increases from 14 to 119, but natural resonance frequency, fr, reduces from 1 GHz to 200 MHz. This is because magnetic anisotropy field decreases more rapidly than saturation magnetization. With increasing x DC electric resistivity, ρ, increases, exceeding 50 Ω cm (a measure of the lower limit for the high-frequency application) when x>0.15. Film with x=0.70 has relatively high μ′≈119 and μ″=0 up to 20 MHz, and is promising to be used as MHz core inductors. Film with x=0.36 has relatively high μ′=80 and μ″=0 up to 100 MHz, and it may be used as inductors at the ten MHz range and noise suppression sheets at the hundred MHz range.  相似文献   

7.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

8.
Some results concerning the magnetic, electrical and microstructural properties of multilayer [FeCoBN/Si3N4n films in view of their utilization for manufacturing thin film magnetic inductors are presented. A comparison between the magnetic, electrical and structural properties of FeCoBN and [FeCoBN/Si3N4n thin films is also reported. The [FeCoBN/Si3N4n thin films with the thickness of the FeCoBN layers varied from 10 to 30 nm, exhibit good soft magnetic characteristics and high values for electrical resistivity such as Ms of 172–185 A m2/kg, Hc of 318–1433 A/m and ρ of 82–48×10−7 Ω m, respectively. These physical properties of the samples are discussed in relation with the microstructure of the multilayer system.  相似文献   

9.
Polycrystalline Fe100−xGax (19?x?23) films were grown on Si(1 0 0) substrates at different partial pressures of sputtering gas ranging from 3 to 7 μbar. Microstructural, magnetic and magnetostrictive properties were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and magneto-optic Kerr effect (MOKE) magnetometry respectively. X-ray diffraction showed that all films have the body-centered cubic (bcc) Fe-Ga phase with the 〈1 1 0〉 direction out of the film plane. Magnetic characterization of the films showed that the films prepared at 3 μbar had weak uniaxial anisotropy whereas films grown at Ar pressures in the range 4-7 μbar were magnetically isotropic. The effective saturation magnetostriction constants (λeff) of the films were measured using the Villari effect. It was found that effective saturation magnetostriction constants were almost constant over the Ga composition range achieved by varying the sputtering pressure. The measured effective magnetostriction constants fit closely to the calculated saturation magnetostriction constants of 〈1 1 0〉 textured polycrystalline films with the 〈1 1 0〉 directions slightly canted with respect to the normal to the sample surface. It was found that a high pressure of the sputtering gas effected the magnetic softness of the films. The saturation field increased and remanence ratio decreased with increase in pressure.  相似文献   

10.
Magnetization, magnetic susceptibility, electrical resistivity, thermoelectric power and X-ray photoemission measurements were performed on a polycrystalline sample of CeCuIn. This compound crystallizes in a hexagonal structure of the ZrNiAl type. The magnetic data indicate that CeCuIn remains paramagnetic down to 1.9 K with a paramagnetic Curie temperature of −13 K and an effective magnetic moment equal to 2.5 μB. The electrical resistivity has metallic character, yet in the entire temperature range studied here, it is a strongly nonlinear function of temperature. The temperature dependence of the thermoelectric power is dominated by a small positive maximum near 76 K and a deep negative minimum at about 16 K. Above 150 K the thermopower exhibits a Mott's type behavior. The positive sign of the Seebeck coefficient in this temperature region indicates that the holes are dominant charge and heat carriers. The structure of Ce 3d5/2 and Ce 3d3/2 XPS spectra has been interpreted in terms of the Gunnarsson-Schönhammer theory. Three final-state contributions f0, f1 and f2 are clearly observed, which exhibit a spin-orbit splitting ΔSO≈18.7 eV. The appearance of the 3d9f0 component is a clear evidence of the intermediate valence behavior of Ce. From the intensity ratio I(f0)/[I(f0)+I(f1)+I(f2)] the 4f-occupation number is estimated to be 0.95. In turn, the ratio I(f2)/[I(f1)+I(f2)]=0.08 yields a measure of the hybridization energy that is equal to 45 meV.  相似文献   

11.
The density of states (DOS) and the magnetic moments of SmCrSb3 and GdCrSb3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb3 is found to be 7.07 μB while for GdCrSb3 it is 8.27 μB. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states.  相似文献   

12.
Electron emission characteristics of Al-AlN granular films   总被引:1,自引:0,他引:1  
An electron conduction emitter of Al-AlN granular films was proposed for surface conduction electron emission device in this paper. The Al-AlN granular films with thickness of 30 nm were prepared between two co-planar electrodes with gap of 10 μm by magnetron sputtering. After electroforming the Al-AlN granular films, the films’ structure could be recovered by applying the periodic device voltage (Vf). Stable and uniform electron emission was observed with turn-on voltage of 5.3 V and threshold voltage of 9 V. The emitter emission current (Ie) of 4.84 μA for 36 cells was obtained with the anode voltage of 2.5 kV and the device voltage of 12 V. In addition, Fowler-Nordheim plots for Ie-Vf properties showed that the electron emission mechanism should be field emission.  相似文献   

13.
The orientation dependences of the converse longitudinal piezoelectric constant d33,f, and the in-plane converse piezoelectric constant e31,f, are calculated for tetragonal barium titanate epitaxial films. The calculations demonstrate that both e31,f and d33,f have their maximum values along an axis close to the (1 1 1) direction of the pseudo-cubic system, which are similar to the orientation dependence results for a tetragonal BaTiO3 single crystal. The calculated piezoelectric constants for a (1 1 1) oriented BaTiO3 epitaxial film (e31,f = −23 C/m2, d33,f = 124 pm/V) suggest that it is a good candidate material for lead-free MEMS applications.  相似文献   

14.
The magnetic properties of annealed Fe-Pt multilayer thin films with a broad composition range were investigated in order to identify the effects of composition and annealing temperature on the achievable coercive field, and to identify its maximum at low processing temperatures. Two types of multilayer systems were deposited as materials libraries to vary the composition from Fe20Pt80 to Fe75Pt25. The first type of multilayer was comprised of alternating opposing wedges, whereas the second type consisted of repeated uniform Fe and Pt layers interspersed periodically with Fe wedge layers. It was found that coercive fields μ0HC > 0.7 T can be achieved at an annealing temperature of about 300 °C (60 min) for both types of multilayers as long as the composition is close to 50:50. Higher annealing temperatures are needed for films, which deviate from this composition. Increasing the annealing temperature up to 700 °C leads to increased coercivity values. Multilayers with additional Fe layers showed increased remanence but reduced coercive fields.  相似文献   

15.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

16.
A novel photonic crystal fiber sensing theory filled with magnetic fluid is proposed based on the change of the MF refractive index under varied magnetic field. The magnetically induced tuning of the magnetic fluid filled PCF propagation properties were investigated by the full-vector finite element method with a perfectly matched layer. Theoretical calculations show that both the effective refractive index and the effective mode area increase vs. the increased magnetic field, and the PCF filled MF with larger d/Λ is more sensitive to magnetic field. When the wavelength λ = 1550 nm, the duty ratio d/Λ = 0.9, d/Λ = 0.6, the effective refractive indexes increase respectively from 1.598279 to 1.617572, from 1.61948 to 1.632484, and the effective mode areas increase respectively from 3.561115 μm2 to 7.052360 μm2, from 6.167494 μm2 to 37.221998 μm2 as the magnetic field changes from 25 Oe to 175 Oe. This scheme provides theoretical foundation to use magnetic field to control light in photonic crystal fiber and also offers a potential method for magnetic field sensing based on the TIR-PCF.  相似文献   

17.
The microwave permeability dispersion behaviors and microwave-absorbing properties for different shapes of Sendust particles prepared by vibrating ball milling at 35 vol% in paraffin wax matrix have been investigated. The dispersion spectrum of permeability was calculated by the Landau-Lifshitz-Gilbert equation and Bruggeman’s effective medium theory. The calculated results are in agreement with the experiment data. According to the calculation results, the value of (μ0−1)fr (μ0 is static permeability, and fr is resonance frequency) for flake particle with larger aspect ratio reached 59.1 GHz and exceeded the Snoek’s limit. Considering the quarter-wavelength model and transmission line theory, the microwave absorption peak was discussed. At the frequency range, the flake particle with larger aspect ratio can make a thinner absorber. It provides a way to decrease layer thickness of magnetic absorber.  相似文献   

18.
Magnetic and microwave absorbing properties of thermoplastic natural rubber (TPNR) filled magnetite (Fe3O4) nanocomposites were investigated. The TPNR matrix was prepared from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) in the ratio of 70:20:10 with the LNR as the compatibilizer. TPNR-Fe3O4 nanocomposites with 4-12 wt% Fe3O4 as filler were prepared via a Thermo Haake internal mixer using a melt-blending method. XRD reveals the presence of cubic spinel structure of Fe3O4 with the lattice parameter of a=8.395 Å. TEM micrograph shows that the Fe3O4 nanoparticles are almost spherical with the size ranging 20-50 nm. The values of saturation magnetization (MS), remanence (MR), initial magnetic susceptibility (χi) and initial permeability (μi) increase, while the coercivity (HC) decreases with increasing filler content for all compositions. For nanocomposites, the values of the real (εr′) and imaginary permittivity (εr′′) and imaginary permeability (μr′′) increase, while the value of real permeability (μr′) decreases as the filler content increases. The absorption or minimum reflection loss (RL) continuously increases and the dip shifts to a lower frequency region with the increasing of both filler content in nanocomposites and the sample thickness. The RL is −25.51 dB at 12.65 GHz and the absorbing bandwidth in which the RL is less than −10 dB is 2.7 GHz when the filler content is 12 wt% at 9 mm sample thickness.  相似文献   

19.
Nb2O5 films with the thickness (d) ranging from 55 to 2900 nm were deposited on BK-7 substrates at room temperature by a low frequency reactive magnetron sputtering system. The structure, morphology and optical properties of the films were investigated by X-ray diffraction, atomic force microscopy and spectrophotometer, respectively. The experimental results indicated that the thickness affects drastically the structure, morphology and optical properties of the film. There exists a critical thickness of the film, dcri =2010 nm. The structure of the film remains amorphous as d < dcri. However, it becomes crystallized as d > dcri. The root mean square of surface roughness increases with increasing thickness as d > 1080 nm. Widths and depths of the holes on film surface increase monotonously with increasing thickness, and widths of the holes are larger than 1000 nm for the crystalline films. Refractive index increases with increasing thickness as d < dcri, while it decreases with increasing thickness as d > dcri. In addition, the extinction coefficient increases with increasing thickness as d > dcri.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号