首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
采用量子化学密度泛函理论中B3LYP方法,研究了单质汞在卤素改性活性炭表面的氧化反应机理。选定七环锯齿形苯环簇为活性炭表面模型,设计了两种卤素改性活性炭模型X-AC和X-AC-X(X=Cl、Br、I)。通过得到氧化反应过程的过渡态,明确了氧化反应过程,并计算单质汞在改性活性炭表面的吸附能和氧化反应的能垒。研究结果表明:单质汞在负载三种不同卤素原子活性炭表面的吸附能的大小顺序均为:ClBrI,且从吸附强度角度分析,氯改性活性炭表面对单质汞的吸附最稳定。单质汞在负载三种不同卤素原子活性炭表面发生氧化反应的能垒大小顺序均为:ClBrI,且从反应发生难易角度分析,碘改性活性炭表面对单质汞的氧化反应最容易发生。单质汞在改性活性炭表面氧化反应的难易顺序可以正确解释改性活性炭脱除单质汞的实验现象。研究单质汞在改性活性炭表面氧化反应过程中的能垒,对于正确全面揭示改性活性炭脱除单质汞机理至关重要。  相似文献   

2.
利用低温等离子体净化烟气中NO2和Hg是一种极具前景的技术,本文对脉冲介质阻挡放电条件下的NO/O2/N2/Hg0体系建立了反应动力学模型,对高能电子参与N2、O2和H2O电离解速率常数采用碰撞反应截面方法求取,模拟预测了活性自由基元(O、OH)、和Hg0等组分在反应器内随时间的变化规律.模拟结果表明:脉冲介质阻挡放电可以有效地脱除烟气中的NO,并促进单质汞的氧化;脉冲电源特性对脱除效率有明显的影响,电源纳秒级脉冲峰宽时间越长,电源脉冲放电频率越高, NO净化及单质汞的氧化效率越好.  相似文献   

3.
铈基催化剂催化氧化燃煤烟气中汞的实验及机理研究   总被引:1,自引:0,他引:1  
采用超声波增强的浸渍法合成了CeO2-TiO2催化剂,并采用BET,XRD,XPS等分析手段对催化剂进行了表征。利用固定床反应器,在模拟燃煤烟气条件下研究了CeO2-TiO2催化剂对单质汞的催化氧化行为及机理。结果表明:CeO2-TiO2催化剂在低温范围(150~250°)具有很强的催化氧化汞的能力;最佳的CeO2/TiO2质量比在1.5左右,此时汞的氧化效率可高达90%以上;P25,Evonik TiO2比锐钛矿TiO2更适合做铈基催化剂载体;CeO2-TiO2催化剂上汞的催化氧化符合Langmuir-Hinshelwood机理,即吸附态的汞与其邻近的活性物质反应生成氧化态汞。  相似文献   

4.
MnO_2是一种备受关注的低温SCR脱硝催化剂的活性组分材料,其不仅对NO_x具有强催化还原作用,而且能够把烟气中的单质汞(Hg~0)催化氧化为易脱除的氧化态汞。本文采用基于密度泛函理论的第一性原理方法研究了H_2O和SO_2在MnO_2表面的吸附机理,并分析其对Hg~0吸附的影响机制.结果表明,H_2O主要吸附在MnO_2(110)表面的Mn_5 top位,而Hg~0主要吸附在O_(br)bridge上,因此H_2O与Hg~0在MnO_2表面不会发生竞争吸附;SO_2能稳定的吸附在MnO_2(110)表面O_(br)bridge或者hollow位上,且SO_2的吸附能小于Hg~0的吸附能,故SO_2会与Hg~0竞争吸附,从而对Hg~0在MnO_2上的吸附产生不利影响。  相似文献   

5.
应用VM3000在线测汞仪作为检测手段,在固定床实验台架上,用碘、硫酸和盐酸改性壳聚糖为吸附剂进行脱汞(Hg~0)实验研究。采用傅里叶变换红外光谱(FTIR)和X射线衍射仪(XRD)对吸附剂进行性能表征。结果表明,碘化钾、硫酸(盐酸)和壳聚糖中的氨基发生了化学反应。质子化的壳聚糖更利于吸附碘这一对Hg~0有吸附力的活性位,壳聚糖吸附剂上碘等活性位的存在形态是其脱除汞的关键因素;单质碘改性壳聚糖吸附剂并不能有效地脱除Hg~0;KI和H_2SO_4改性壳聚糖吸附剂120 min内的汞容积量达200μg/g,其初始时刻的最大脱汞效率可达100%。  相似文献   

6.
燃煤烟气汞脱除的核心是单质汞(Hg~0)的高效氧化。本文基于低温等离子体技术,系统研究了放电电压、自由基源气体组成、烟气温度及烟气组分对氯自由基(Cl)注入强化氧化Hg~0的影响,结果发现降低注入点烟气温度、增加Cl注入量以及烟气中的NO均有利于Hg~0氧化,最佳放电电压的选取则与自由基源气体组成密切相关,一定条件下,注入极少量C_(12)(19 mg/m~3)即可获得97.9%的Hg~0氧化率。  相似文献   

7.
MnOx/Ti-PILC低温NH3-SCR脱除NO研究   总被引:2,自引:0,他引:2  
实验制备并测试MnOx/Ti-PILCs的低温(80~260℃)SCR脱硝活性,发现当MnOx负载量为10%,催化剂煅烧温度为300℃时催化剂表面酸性较强,活性成分分散较好,脱硝活性最佳,在180℃下,NO脱除效率接近100%。研究了氧浓度和空速等对脱硝效率的影响,发现O2浓度为3%时,对催化剂最为有利;在65000 h-1的高空速条件下,10 MnOx/Ti-PILC(300)依然表现出较高活性。MnOx/Ti-PILC与MnOx/Al2O3活性相当,高于MnOx/TiO2。  相似文献   

8.
采用溶胶一凝胶法合成了CuO-CeO_2/TiO_2(CuCeTi)催化剂,并采用BET,XRD,XPS等分析手段对催化剂进行了表征。在固定床实验装置上研究了低温SCR气氛下催化剂对单质汞(Hg~0)的催化氧化。结果表明;SCR气氛(NO+NH_3+4%O_2)下CuCeTi催化剂可以促进Hg~0的氧化。200℃,NO与NH_3体积分数均为0.1%,空塔气速(GHSV)高达54000 h~(-1)时,CuCeTi催化剂上Hg~0的氧化效率仍可高达99%;SCR气氛可以抑制CuCeTi催化剂上Hg~0的氧化,且NO与NH_3的浓度越高,抑制作用越强,但这种抑制作用随GHSV的降低可以得到缓解甚至消除。CuCeTi催化剂在SCR气氛下具有良好的汞氧化活性与稳定性,应用该SCR催化剂有望实现燃煤烟气中NO_x与Hg~0的协同控制。  相似文献   

9.
本文采用水平管式电加热炉,使一定浓度的单质汞蒸气和各种反应气体的混合气在石英管反应器内发生氧化反应,研究了二价汞的生成比例.实验结果表明HCl对汞的氧化能力在473~873 K区间很低,而Cl2对汞有很强的氧化能力.通过热力学计算对生成的二价汞的具体种类进行推断,还考查了气氛中H2O的存在对汞氧化的影响,计算结果和实验结果基本相符.结果表明,Cl2是汞氧化的重要因素,生成HgCl2(g).HCl对汞的氧化几乎不起作用.Cl2和H2O可能发生反应生成对汞氧化能力低的HCl,从而使汞氧化温度区域向低温转移.  相似文献   

10.
纳米TiO_2-活性炭的制备及光催化脱汞初探   总被引:4,自引:0,他引:4  
采用溶胶凝胶法以活性炭(AC)为载体,制备纳米TiO_(2-)活性炭复合物(TiO_(2-)AC).采用X射线衍射仪(XRD),场发射扫描电镜结合X射线能谱分析仪(FSEM-EDX)对TiO_(2-)AC复合物进行表征。在波长为253.7 nm的紫外光照射下进行TiO_(2-)AC光催化氧化脱除单质汞试验。结果表明,复合物表面TiO_2纳米粒子尺寸可控制在30 nm左右;热处理温度的升高促进TiO_2晶粒的生长及相变,复合物中TiO_2锐钛矿相向金红石相转变的温度在500~700℃之间;负载锐钛矿型TiO_2的复合物较金红石型复合物显示出更强的光催化脱汞效果。TiO_(2-)AC能够达到预期的结合TiO_2光催化氧化性能与活性炭强吸附能力的效果,脱汞性能显著,具有广阔的应用前景。  相似文献   

11.
在固定床吸附实验台上研究了N_2气氛下纳米硫化锌(Nano-ZnS)对单质汞的吸附脱除特性,分析了锌硫比(Zn:S)和干燥温度等制备条件以及反应床温度对其脱汞效果的影响,并和活性炭的脱汞性能进行对比。结果表明:锌硫比和干燥温度对吸附剂的脱汞性能影响很大,锌硫比为1:0.98,干燥温度为160℃时制备出的纳米硫化锌的脱汞性能最佳;纳米硫化锌对汞的吸附以化学吸附为主,在200℃左右,吸附作用最强;与商业活性炭相比,纳米硫化锌具有更优秀的汞吸附能力以及吸附速率。  相似文献   

12.
为了有效处理污水中的重金属铬,本文利用废弃物甘蔗渣负载镍和氮,制备出一种高催化性能的活性炭用于降解吸附污染水体中的Cr~Ⅵ.利用BET、SEM、Raman、XRD、XPS等手段对负载镍生物质基活性炭进行理化性质表征,对其催化吸附Cr~Ⅵ的性能进行评估并探究了其催化吸附机理。结果表明,在甲酸作为辅助催化剂时,负载镍生物质基活性炭对Cr~Ⅵ的最大降解量高达824.38mg/g,并且循环性能优良,活性位点有较高稳定性。而其催化吸附过程涉及到含氧官能团与Cr的络合作用、单质镍与Cr~Ⅵ氧化还原反应、Ni~(3+)和Cr~(3+)共沉淀等作用。  相似文献   

13.
为了获得性能高效的非碳基吸附剂脱除燃煤烟气中排放的Hg,采用液溴浸渍的方法,对吸附剂进行了改性。通过固定床和沉降炉吸附实验,发现高岭土、沸石和石灰石改性后对单质汞的吸附能力有较大提高。改性后的吸附能力提高的原因在于化学吸附的增强。  相似文献   

14.
采用液相沉淀法制备了CuS/ZnS复合材料,在固定床吸附实验台上研究了材料的单质汞(Hg~0)吸附特性.结果表明:CuS/ZnS的Hg~0吸附速率远快于纯CuS或ZnS;CuS的最佳摩尔比随反应温度升高而降低,150℃下,CuS和ZnS的摩尔比为10%时材料脱汞性能最为优异,1 mg 10Cu-Zn可将40μg·m~(-3)的初始汞浓度降为0;通过调整CuS和ZnS的比例,可制备出适合任何温度条件的二元硫化矿物吸附剂,对开发适用于多种工业烟气Hg~0控制的多元复合硫化物材料具有指导意义。  相似文献   

15.
以聚乙二醇(PEG)作为分散剂,采用共沉淀法合成La-Co-O复合氧化物,考察添加不同分子量的PEG (0, 2 000, 6 000, 20 000 g·mol-1) 对复合氧化物的物化性质及苯完全氧化性能的影响。采用N2物理吸附、XRD、SEM、H2-TPR、O2-TPD和XPS进行催化剂表征。苯完全氧化反应结果显示催化剂活性顺序为LCO-PEG6000>LCO>LCO-PG20000>LCO-PG2000, LCO-PEG6000催化剂在383 ℃时对苯的转化率达到99%,比LCO低126 ℃。N2物理吸附实验表明所制备的样品的SBET均为9~10 m2·g-1。XRD分析显示合成的催化剂均为LaCoO3钙钛矿主相伴生少量La2O3和Co3O4杂相,但添加PEG有利于钙钛矿主相的形成。尤其是添加PEG6000有效地抑制了催化剂颗粒的团聚,合成的样品颗粒均匀且尺寸最小。H2-TPR和O2-TPD结果表明该催化剂具有更高的还原性能和晶格氧迁移能力,同时XPS分析显示表面活性Co3+含量最高,这些性质使其具有最高的催化氧化活性。  相似文献   

16.
以石墨粉(G)为原料,通过化学方法制备了氧化石墨烯(GO)、纳米Fe_3O_4负载石墨烯复合材料(MGO)、纳米Ag颗粒修饰磁性氧化石墨烯(GO-Ag/MGO-Ag)四种吸附材料,对材料进行了表征并考察了氧化石墨烯及其复合物对烟气中汞的吸附作用。研究表明四种石墨烯基吸附剂可被成功合成和表征;GO在100-150℃时对Hg~0表现出优异的吸附性能,Ag-NPs修饰GO能有效提升吸附剂对汞的吸附能力,MGO-Ag复合吸附剂对汞的吸附能力最佳;MGOAg在150~200℃时表现出优异的汞吸附能力,在反复循环之后吸附性能几乎不变;以MGO-Ag为代表的可再生磁性石墨烯基复合吸附剂在中低温条件下对Hg~0具有优异的吸附性能,且能有效与飞灰进行分离,具有良好的工业应用前景。  相似文献   

17.
燃煤烟气中单质汞Hg~0具有高蒸汽压力和低溶解性,需要使用氧化剂把其氧化并吸收到溶液中,但成本较高.对于用NaClO脱汞的溶液进行膜电解,不仅可以提取汞单质,还可以实现吸收液的再生,降低湿法脱汞的成本。本文分析了电解原理并进行了循环伏安特性测试,确定了电解的电极电势,在H型电解槽中测试了不同反应条件对电解电流效率的影响,为该技术的工业应用提供数据参考。  相似文献   

18.
本文采用化学还原法制备了系列Ni纳米团簇(NCs)修饰的板钛矿TiO2准纳米立方块(Ni/BTN). 结果表明,Ni NCs的负载量和氧化态对Ni/BTN复合材料的光吸收、光催化活性和稳定性均存在显著的影响. 在制备的系列Ni NCs负载产物中,0.1%Ni/BTN复合材料的光催化产氢活性(156 μmol/h)最佳,为单纯的BTN产氢活性(36 μmol/h)的4.3倍. 进一步的研究结果表明,Ni NCs的超细尺寸(∽2 nm)和高分散性有利于快速捕获BTN的光生电子,从而可缩短光生电荷的传输距离和提高BTN 的光催化活性. 结果证明了板钛矿TiO2是一类潜在的高效光催化材料,为采用低成本Ni基助催化剂进一步提高其光催化性能的研究提供了重要的思路.  相似文献   

19.
在固定床反应器上研究了N_2气氛下纳米氧化铁对单质汞的吸附脱除特性,探讨了吸附剂颗粒尺寸,反应床温度,停留时间及表面羟基基团对纳米氧化铁除汞性能的影响。研究表明,与普通氧化铁颗粒瞬间到达穿透相比,纳米氧化铁具有更强的汞吸附能力,相同条件下其80%穿透时间达到45 min,XPS分析表明,纳米氧化铁表面85%以上均为氧化态的汞。汞在纳米氧化铁上的吸附过程中化学反应起重要作用。在试验温度范围内,随着反应床温度增加,纳米氧化铁对汞的吸附性能提高幅度显著。反应前后样品的红外光谱分析结果表明,纳米氧化铁表面主要是游离态的羟基参与了汞吸附反应。  相似文献   

20.
燃煤烟气汞的大量排放对公众健康和生态系统造成了严重威胁,开发新型高效脱汞技术和材料对汞污染防治具有重要意义。本文采用原位硒化方法制备了泡沫硒化铜(Cu-hs),与采用水热法制备的泡沫硒化铜(Cu-hd-1和Cu-hd-12)相比,Cu-hs具有更优的单质汞(Hg0)吸附性能。Cu-hs具有良好的抗H2O和SO2干扰能力,O2对Cu-hs吸附Hg0有一定的促进作用,而HCl的存在对Hg0吸附没有明显影响。Cu-hs表面的汞饱和吸附量为3743 g/m3(约为15 mg/g),显著高于目前文献中报道的活性炭的饱和吸附量,具有很好的燃煤烟气脱汞应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号