首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
本文数值模拟研究了不同攻角下压气机PVD叶栅中的复杂流动情况,分析了叶栅通道中的二次流对三维角区分离流动的影响。结果表明:马蹄涡在压气机叶栅通道中的发展不明显并且在叶栅通道中很快耗散,因此对三维角区分离影响不大;而通道涡是压气机叶栅通道中主要的二次涡,增强了三维角区分离流动现象,增加了气流总压损失。  相似文献   

2.
沟槽面对扩压叶栅表面流态的影响   总被引:1,自引:1,他引:0  
采用油流显示技术研究了沟槽面扩压叶栅表面流动的拓扑结构,通过与光滑叶栅壁面流动拓扑图像的比较,发现沟槽面能抑制叶背附面层的发展,减小附面层内低速流体的展向流动,减弱叶背附面层与叶背角区旋涡的相互作用.随后用总压耙对栅后流场进行了测量,和光滑叶栅测量结果相比,沟槽面叶栅端壁区总压损失低,主流区沟槽面叶栅尾迹宽度变小、损失降低,证实该非光滑面能减小叶栅二次流损失.  相似文献   

3.
不同负冲角工况下透平叶栅二次流的数值模拟及分析   总被引:1,自引:0,他引:1  
本文应用TVD格式和Baldwin-Lomax代数紊流模型求解三维NS方程,对一个透平直列叶栅流场在两个不同的负冲角工况下进行了数值模拟,给出了叶栅马蹄涡及其分离鞍点、通道涡、角涡等二次流涡系的结构及其产生发展过程,并对不同工况下的涡系结构及冲角的影响作了详细的分析和比较.本文结果有助于对叶栅二次流涡系结构的产生发展机制的深入了解,同时表明所用数值求解技术有较高的精度和分辨率。  相似文献   

4.
本文应用Beam-Warming近似隐式因子分解格式以及MML代数湍流模型,采用拟压缩性方法求解雷诺平均拟压缩N-S方程组,对弯曲叶片压气机叶栅内的三维粘性流场进行了数值研究.结果表明,正弯曲叶栅内通道涡较直叶栅强,其诱导产生的壁面涡较弱且位于吸力面与壁端的角区内,与壁角涡接近.在正弯曲叶栅出口处,通道涡开始处于破裂前期,叶栅总损失增加。反弯曲叶栅通道涡较弱,其诱导的壁面涡很强,位于通道涡左上方,壁面涡和通道涡的有利作用,使通道涡更稳定,叶栅总损失比直叶栅和正弯曲叶栅要小.  相似文献   

5.
冲角和叶片倾斜角对矩形叶栅出口二次流场的影响   总被引:1,自引:0,他引:1  
一、实验装置与模型 在低展弦比矩形透平静叶栅中,占总损失主要部分的二次流损失与出口截面上通道涡的位置和尺度有关。本文通过在较大冲角范围内对具有不同倾斜角叶片叶栅出口流场的测量,研究旋涡结构与二次流的关系,从而进一步完善降低二次流损失的方法。  相似文献   

6.
超高负荷涡轮叶栅内的旋涡结构分析   总被引:2,自引:0,他引:2  
通过对叶型转折角为160°的超高负荷平面涡轮叶栅内部的流场细节进行数值模拟,将数值模拟结果与流场流线拓扑分析理论相结合,对叶栅内的复杂旋涡结构进行定性分析,详述超高负荷平面涡轮叶栅内马蹄涡、通道涡、壁角涡、尾缘涡和端壁二次涡等涡系的产生、发展和演化过程,以及它们之间的相互作用关系;在此基础上,通过总压损失系数分布和出口截面涡量分布给出定量分析。  相似文献   

7.
来流附面层对大转角扩压叶栅气动性能的影响   总被引:2,自引:0,他引:2  
实验对比了低速条件下抽吸来流附面层前后某大转角扩压叶栅性能的变化。在叶栅壁面进行了墨迹流动显示,并对叶栅出口截面参数进行了测量。结果表明,入口附面层主要影响的区域是损失比较严重的吸力面/端壁角区。减薄大转角扩压叶栅的入口附面层可有效抑制栅内端壁附近的横向二次流、抑制角区分离、降低损失。当吸气量为入口流量的2.5%时,总...  相似文献   

8.
通道涡稳定性及对损失的影响   总被引:7,自引:0,他引:7  
采用具有TVD性质的三队精度Godunov格式,对均匀加载叶型及后部加载叶型所构成的叶栅在不同弯角下的流场进行了数值模拟。详细研究了叶片弯曲后对通道涡截面拓扑结构的影响。发现叶片正弯后有利于使通道涡在结构上变得稳定;同时也指出;与常规叶片相比,二次流损失较小的后部加载叮型所构成的叶栅内的通道涡在结构上较为稳定。本文进一步分析了通道涡结构的改变对损失的影响;并指出使通道涡在结构上变得稳定的边界条件可能有助于减少二次流损失。  相似文献   

9.
国内外学者对小展弦比透平静叶栅已提出了成熟的端壁流模型,但是对采取子午加速、附加栅栏、变弯度叶片和弯扭叶片诸减少二次流损失措施的叶栅倘缺少研究。本文通过弯叶片叶栅在不同冲角下的实验,探讨了叶片弯曲引起流向涡结构的变化及相应端部损失的降低,并在认识弯叶片端壁流模型的同时评价了它的变工况性能。  相似文献   

10.
端壁翼刀降低叶栅损失机理的实验研究   总被引:1,自引:0,他引:1  
通过实验研究和拓扑分析的方法,分析了安装端壁翼刀后的压气机叶栅内流场的旋涡结构和演化过程.结果表明,安装翼刀后,在翼刀的安装位置产生了一对方向相反的旋涡,通道涡的强度减弱;马蹄涡的吸力面分支与叶栅吸力面相交的位置向下游推移,沿叶高向叶片中部流动的范围缩短,进而叶栅吸力面壁角区的流动得到了改善,降低了叶栅总损失.  相似文献   

11.
进口附面层厚度对弯叶片扩压叶栅损失的影响   总被引:4,自引:0,他引:4  
本文通过人工加厚叶栅进口附面层厚度,考察了叶搬进口附面层厚度对弯叶片扩压叶栅损失的影响.实验结果表明,进口附面层厚度增加时,叶栅两端区二次流增强,叶栅损失增大.采用正弯曲叶片在参考进口附面层状态和人工加厚附面层时均未得到叶栅损失的降低,而反弯曲叶栅损失的降低出现在参考进口附面层状态下.  相似文献   

12.
采用控制容积积分法和协调一致压力修正算法数值求解三维稳态时均N-S方程组,对一小展弦比透平动叶栅在旋转状态下的二次流涡系演变和三维气动特性进行了分析。计算结果表明,该叶栅上下端壁通道涡在叶展中部交汇,在该处产生强烈的横向流动并引起叶展中部能量损失急剧增加,使损失沿叶高的分布由常见的双驼峰型变为单驼峰型,同时还使叶展中部出口气流的欠偏转角大幅度增大。  相似文献   

13.
环形叶栅中二次流与损失的数值模拟   总被引:4,自引:1,他引:3  
1引言三维叶栅中的损失主要由叶型损失、端部损失及二次流损失等组成。而其中的二次流损失,由于在损失总量中往往占有很大的比重,且又强烈依赖于叶栅几何形状等本身的特点,因而十分受到关注。许多学者分别用计算或试验的方法来研究二次流动,已经做了大量的工作(如文献1~8)。然而,以往大部分的研究往往局限于直列叶栅,对沿径向非等截面的环形叶棚的详细研究甚少。本文基于非正交曲线坐标与非正交速度分量下完全守恒型的Navier-Stokes方程,采用时间推进法与Baldwin-Lomax湍流模型,数值求解环形叶栅内部的粘性流场,得到了十分…  相似文献   

14.
早在六十年代初期,Smith提出了弦向倾斜叶片 ̄[1]。叶片的这种倾斜集叶片的后掠(叶片展向与气流不垂直)和上反(叶片表面与端壁斜交)于一身。根据理论分析可知,弦向倾斜叶片与周向倾斜叶片比较,在相同倾斜角下,它更能有效地抑制通道涡的形成和发展 ̄[2]。但是,到现在为止还没有实验数据证实这一计算结果。本文继文献 ̄[3]详细测量了弦向倾斜叶片叶栅由栅前至栅后诸截面上的气动参数。实验结果表明,弦向倾斜对损失的发展起到了与周向倾斜相类似的作用,但是前者比后者减小了叶栅进口段的流向逆压梯度,从而降低了二次旋涡损失。本文还测量了大转角常规直叶栅与反弯叶片叶栅端壁与叶片表面上的静压分布,探讨了反弯叶片降低损失的原因,认为:减小叶栅进口段流向逆压梯度,在叶片吸力面前部形成垂直于端壁的平行静压等值线、在中部形成反“C”型静压等值线,以及在流道内建立沿叶高的反“C”型静压分布,是反弯叶片降低损失的三要素。  相似文献   

15.
1前言随着对叶轮机械研究的深入,叶轮机械内部的真实复杂流动已成为重要的研究课题。认识扩压叶栅内的流动分离和旋涡的发生、发展及相互作用,对于揭示压气机内部流动机制,改善流动结构,提高其喘振裕度,以及发展喘振控制技术都具有重要意义山。尽管人们已进行了许多研究,但尚未完整充分地认识这一复杂现象的物理现象和物理模型。对处在严重流动分离状态下的环形叶栅内部流动的研究就更为少见。本文应用油膜法显示了从约零度到二十几度多个来流攻角下,一大展弦比叶片低稠度环形压气机叶棚的表面流场。进口气流马赫数约为0.1。叶片进…  相似文献   

16.
根据流动稳定性理论,在边界层外区大尺度涡理论模型的基础上提出了一种解释尾迹流中大尺度涡产生机理的三维理论模型。采用该模型对NACA0012翼型尾缘后0.1到0.3倍弦长区域的流动进行计算,得出的流场结构及大尺度量的等值线等与实验符合一致,说明该理论模型能够很好地捕捉到尾迹流中大尺度结构的主要特征。该模型的提出为开展尾迹型流动的实验和数值模拟研究提供理论支持,同时为研究尾迹对流动的影响,特别是叶轮机内部的流动前一级叶栅尾迹对下一级叶片边界层的干扰提供了很大的简化。  相似文献   

17.
In this paper,the separation-induced transition in an LPT(low-pressure turbine)cascade is investigated at low Reynolds number with DNS(direct numerical simulation).The transition process is accurately predicted giving good agreements between the DNS and experimental results.To illustrate the secondary instability of separation-induced transition in a low-disturbance environment,the results are comprehensively analyzed in both Fourier space and physical space.It is illustrated that the effect of hyperbolic instability dominates around the saddle point of hyperbolic streamlines.This instability mechanism is responsible for the emergence of the streamwise vortices in the braid region.Elongated and intensified because of the“stretching”effect of the background flow,these vortices become the most noticeable characteristic of the flow field.Fundamental modes of small spanwise wavelength are excited in the braid region,so as some low-frequency modes.The elliptical instability plays a minor role than hyperbolic instability.It is also observed that the fundamental mode with a larger spanwise wavelength is unstable in the vortex core which is associated with the deformation of the vortex core via elliptical instability.There is no convincing evidence for the existence of subharmonic instability.  相似文献   

18.

Abstract  

The bypass transition of flat-plate boundary layer induced by a circular cylinder wake under the influence of roughness elements is experimentally investigated. The hydrogen-bubble visualization results show that the boundary layer separation occurs upstream of the roughness, and the separated shear layer is incised by roughness to different extent, resulting in different kinds of secondary vortices formed immediately downstream of the roughness. During the evolution of the secondary vortex, two types of instabilities are observed, which are denoted as large- and small-scale instabilities, respectively, according to different spatial scale of the hairpin vortices formed afterward. A merging process of hairpin vortices is also observed when the secondary vortices undergo the small-scale instability, and a potential new transition control strategy based on the present observation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号