首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
鄢舒  王殊 《物理学报》2008,57(7):4282-4291
提出了一种宽频率范围的弛豫衰减谱重建算法,并采用基于SSH理论的方法和基于实验数据的方法估计气体的有效弛豫时间.通过该算法得到了包括氮气、甲烷、氧气、二氧化碳和水蒸气在内的多种多原子分子混合气体的声衰减谱,研究的声波频率范围从1Hz到10GHz.与预测弛豫衰减的DL模型的结果比较表明,该算法获得的弛豫衰减谱结果与之相符,其预测精度取决于对分子弛豫过程的正确认识.另外该算法还被用于几种混合气体中水蒸气和二氧化碳含量的分析,其结果表明弛豫衰减谱可被用于定量分析多原子分子气体的成分组成,这使得实现高灵敏度地检测气体成分的智能声气体传感技术成为可能. 关键词: 声弛豫衰减 有效弛豫时间 重建算法 声气体传感器  相似文献   

2.
提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,提取出的主成分作为SVR的输入建立校正模型,实现了甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七种组组分特征吸收光谱严重重叠的混合气体的定量分析。用KPCA-SVR所建模型对未知浓度混合气体的七种组分预测的RMSE (φ×10-60较仅用SVR模型预测的RMSE (φ×10-6)降低了一个数量级。结果表明,核主成分分析法具有很强的非线性特征提取能力,可以充分利用全光谱数据并有效地消除光谱数据噪声,降低数据维数,与支持向量回归机结合可以提高红外光谱分析的精度,缩短模型计算时间,是一种有效的红外光谱分析新方法。  相似文献   

3.
In this study a theoretical approach for the estimation of ultrasonic attenuation is proposed. The approach combines two models which take into account both absorption and scattering. Attenuation due to absorption is studied by using the Biot’s analytical model whereas that due to scattering is described by means of a generalized weak scattering model which is formulated for binary mixtures. The scattering model takes account of the density fluctuation of the porous medium in addition to the propagation velocity fluctuation. For the calculation of the attenuation coefficient due to absorption, experimental values have been used to link size of pores to porosity. The theoretical results have been compared with experimental data obtained on bovine cancellous bone samples filled with water. Using an immersion acoustic transmission method, the ultrasonic attenuation has been measured at a frequency range between 0.1 and 1.0 MHz for 12 bovine cancellous bone samples with a porosity range between 40% and 70%. The prediction of attenuation with this model appears to correspond more closely to its experimentally observed behavior. This study indicates that scattering is the predominant mechanism which is responsible for attenuation in trabecular bone. Furthermore, it shows that the density fluctuations contribute significantly to the phenomenon of attenuation and cannot thus be neglected.  相似文献   

4.
张克声  王殊  朱明  丁毅  胡轶 《中国物理 B》2013,22(1):14305-014305
Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrational- translational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model.  相似文献   

5.
In our previous work (Hu et al., 2014), a method has been proposed to detect gas compositions by locating the acoustic spectral peaks, which can be detected only by two-frequency acoustic measurements in practice. However, as a ‘Detection Calibration’, the effective relaxation area (ERA) constructed by existing theoretical model cannot match the two-frequency measurements when there are more than one strong relaxational components in gas mixtures. This paper proposes a method to construct the ERA by coupling the decoupled single relaxation times together to a whole relaxation time. For gas mixtures with only one single relaxation process, the predicted ERA results match with the experimental data better than those predicted by the existing model. Moreover, for gas mixtures in which more than one relaxation process are significant, the ERA results predicted by the proposed method also match with the detection results of two-frequency measurements better than the existing model. This relaxation time coupling based ERA constructing method is validated by the application in low-quality natural gas detection.  相似文献   

6.
A new particle method is presented for the numerical simulation of compressible inviscid gas flows, through procedures which involve relatively small modifications to an existing direct simulation Monte Carlo (DSMC) algorithm. Implementation steps are outlined for simulations involving various grid geometries and for gas mixtures comprising an arbitrary number of species. The proposed method is compared with other numerical schemes through a series of one-dimensional and two-dimensional test cases, and is shown to provide a significant reduction in both artificial diffusion and statistical scatter effects relative to existing DSMC-based equilibrium particle methods.  相似文献   

7.
基于高分辨的CT数据建立了非均匀颅骨仿真模型,该模型引入了颅骨的声衰减系数,深入研究和分析了声波时间反转法和超声相控阵法在颅脑中的聚焦方法及效果。颅骨具有较强的声波衰减特性,使用时间反转聚焦时需要进行幅度补偿,对于0.7MHz的频率信号,幅度补偿后的时间反转聚焦声场主瓣宽度窄、旁瓣低,焦点处声场比无幅度补偿的时间反转法提高8.86dB,比超声相控阵聚焦法提高7.89dB,具有很好的空间聚焦精度和聚焦效率。研究了颅骨衰减系数、声场焦点位置、声波频率、换能器阵列位置和方位等参数对聚焦声场的影响,结果表明,幅度补偿时间反转法比相控阵法具有更低的旁瓣,且高频时的聚焦效果比相控阵好,相控阵聚焦对换能器阵列的位置和方位比较敏感,而时间反转经颅超声聚焦对声传播路径和入射角具有更高的鲁棒性。   相似文献   

8.
The separation of components in a gas mixture is important for a wide range of applications. One method for achieving this separation is by passing a traveling acoustic wave through the gas mixture, which creates a flux of the lighter components away from the transducer. A series of simulations was performed to assess the effectiveness of this method for separating a binary mixture of argon and helium using the lattice kinetics method. The energy transport equation was modified to account for adiabatic expansion and compression. The species transport equation was modified to include a barodiffusion term. Simulations were performed on two different scales; detailed acoustic wave simulations to determine the net component flux as a function of local concentration, pressure, etc. and device scale simulations to predict the gas composition as a function of time inside a gas separation cylinder. The method is first validated using data from literature and then applied to mixtures of argon and helium. Results are presented and discussed.  相似文献   

9.
The method of acoustic spectroscopy is used for the first time for investigating the spectra of ultrasonic attenuation in the range of 3–100 MHz on oriented carbon nanotubes in the stabilized aqueous dispersion. The anisotropy of attenuation of ultrasound manifests itself in a significant distinction between the attenuation spectra for preferential perpendicular and parallel orientation of carbon nanotubes with respect to the wave-propagation direction. A qualitative agreement of the measured-spectra shape with that of the attenuation spectra calculated from the theoretical model is obtained.  相似文献   

10.
We have measured the attenuation of surface acoustic waves on polished substrates and correlated the frequency-dependent attenuation with sub-surface damage. The damage was produced in single crystal lithium niobate samples by lapping and polishing with commercially available diamond compound. Surface acoustic wave attenuation on these samples was measured from 100 MHz to 1.5 GHz using interdigital transducers, thus covering depths ranging from 35 μm to 2 μm below the lithium niobate surface  相似文献   

11.
There is no accurate analytical approach for the acoustic performance prediction of Helmholtz resonator with conical neck,which has broad band acoustic attenuation performance in the low frequency range.To predict the acoustic performance of the resonator accurately,a general theory model based on the one-dimensional analysis approach with acoustic length corrections is developed.The segmentation method is used to calculate the acoustic parameters for sound propagation in conical tubes.And then,an approximate formula is deduced to give accurate correction lengths for conical tubes with difierent geometries.The deviations of the resonance frequency between the transmission loss results obtained by the general theory with acoustic lengths correction and the results from the finite element method and experiments are less than 2 Hz,which is much better than the results from one-dimensional approach without corrections.The results show that the method of acoustic length correction for the conical neck greatly improved the accuracy of the one-dimensional analysis approach,and it will be quick and accurate to predict the sound attenuation property of Helmholtz resonator with conical neck.  相似文献   

12.
Ergün AS 《Ultrasonics》2011,51(7):786-794
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived “rule of thumb” expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4 cm acoustic aperture, and for a two-dimensional array of 4 × 4 cm2 acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86 MHz, and 0.79 MHz, respectively, when the target depth is 4 cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9 MHz and 0.86 MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.  相似文献   

13.
对于多组分混合气体定量分析而言,基于特征光谱的定量分析技术具有不可比拟的优势,而定量检测效率与精度取决于其采用的光谱数据处理算法的优劣。优化光谱分析算法参数与改进光谱数据处理方式是提高定量分析速度与精度的重要手段。针对井下多组分气体定量分析建模过程中支持向量机(SVM)参数难以确定,并且随组分数增多而呈指数增长的光谱数据运算量的问题,提出了一种改进型粒子群优化-支持向量机(PSO-SVM)算法。该算法主要针对多组分气体混合光谱数据量大,光谱特征信息存在交叠的问题进行研究。通过粒子变异约束PSO算法的收敛路径,再通过粒子信息共享提高模型优化效率,最后利用设置动态不敏感区提高模型精度。设计了一种井下多组分气体快速定量检测系统。该系统由CPU控制信号调制模块驱动红外光源,信号光经过滤尘除湿后的气室照射在探测器上。在压力与温度传感器补偿的基础上,由信号处理模块将探测得到的光信号量化传入CPU,最终,结合改进型PSO-SVM算法实现各组分气体浓度的定量分析。在完成井下实际样气采集、预处理的基础上,对浓度范围0~10.0%的CH4和浓度范围0~1.0%的C2H6,C3H8,SO2和CO2共5种组分的混合气体进行了测试,获得了800组红外光谱数据,其中训练集400组,验证集400组。采用SVM建立了多组分气体的定量分析模型,利用改进型PSO对SVM中的参数进行了优化,并将获得的最优参数重建了定量分析模型。对采集的红外光谱数据分别由本算法与传统BP网络算法进行各组分气体浓度反演,实验结果显示,由于变异粒子对其产生的约束,使最优值收敛范围变小,从而提高了收敛速度,该算法建模时间仅为传统方法的1/10;由于通过气体光谱特性给出不敏感区,使特征光谱计算时交叉敏感效率降低,从而提高了模型预测的准确度,平均误差约为传统方法的1/5。由此可见,该算法在全局优化及快速收敛方面得到了显著提升,改进型PSO结合SVM用于井下多组分气体定量分析是可行的。改进型PSO-SVM算法对于多组分气体混合红外光谱数据的分离具有很好的适用性,其有一定的实际应用价值。  相似文献   

14.
Gas flows in the continuum-transition regime often occur in micro-electro-mechanical systems. The relaxation time Monte Carlo (RTMC) method was modified by using an ellipsoid statistical model and a multiple translational temperature model in the BGK model equation to simulate continuum-transition gas flows. The modified RTMC method uses a simplified form of the generalized relaxation time, which is related to the macro velocity and the local Knudsen number. The results for Couette flow and Poiseuille flow in microchannels predicted using the modified RTMC and the DSMC are in good agreement with the modified RTMC being much faster than the DSMC for continuum-transition gas flow simulations.  相似文献   

15.
The information preservation (IP) method has been successfully applied to various nonequilibrium gas flows. Comparing with the direct simulation Monte Carlo (DSMC) method, the IP method dramatically reduces the statistical scatter by preserving collective information of simulation molecules. In this paper, a multiple temperature model is proposed to extend the IP method to strongly translational nonequilibrium gas flows. The governing equations for the IP quantities have been derived from the Boltzmann equation based on an assumption that each simulation molecule represents a Gaussian distribution function with a second-order temperature tensor. According to the governing equations, the implementation of IP method is divided into three steps: molecular movement, molecular collision, and update step. With a reasonable multiple temperature collision model and the flux splitting method in the update step, the transport of IP quantities can be accurately modeled. We apply the IP method with the multiple temperature model to shear-driven Couette flow, external force-driven Poiseuille flow and thermal creep flow, respectively. In the former two cases, the separation of different temperature components is clearly observed in the transition regime, and the velocity, temperature and pressure distributions are also well captured. The thermal creep flow, resulting from the presence of temperature gradients along boundary walls, is properly simulated. All of the IP results compare well with the corresponding DSMC results, whereas the IP method uses much smaller sampling sizes than the DSMC method. This paper shows that the IP method with the multiple temperature model is an accurate and efficient tool to simulate strongly translational nonequilibrium gas flows.  相似文献   

16.
A number of recent studies have indicated the potential of ultrasound contrast agent imaging at high ultrasound frequencies. However, the acoustic properties of microbubbles at frequencies above 10 MHz remain poorly understood at present. In this study we characterize the high frequency attenuation properties of (1) BR14, (2) BR14 that has been mechanically filtered (1 and 2 microm pore sizes) to exclude larger bubbles, and (3) the micron to submicron agent BG2423. A narrowband pulse-echo substitution method is employed with a series of four transducers covering the frequency range from 2 to 50 MHz. For BR14, attenuation decreases rapidly from 2 to 10 MHz and then more gradually from 10 to 50 MHz. For 2 microm filtration, the attenuation peaks between 10 and 15 MHz. For 1 microm filtration, attenuation continues to rise until 50 MHz. The agent BG2423 exhibits a diffuse attenuation peak in the range of 15-25 MHz and remains high until 50 MHz. These results demonstrate a strong influence of bubble size on high frequency attenuation curves, with bubble diameters of 1-2 microm and below having more pronounced acoustic activity at frequencies above 10 MHz.  相似文献   

17.
研究可激发气体中振动模式能量转移速率和声弛豫过程形成的关系,将单一气体Tanczos弛豫方程理论[J.Chem.Phys.25,439(1956)]扩展应用于混合气体中振动模式的振动-振动(V-V)和振动-平动(V-T)能量转移速率的计算。在室温下CO2,CH4,CL2,N2和O2组成的多种混合气体中,振动模式能量转移速率的计算结果表明:对于多个振动模式所形成的声复合弛豫过程,各振动模式的声激发能可由V-V能量转移相互耦合后传递给具有最快V-T转移速率的最低振动频率振动模式,再通过该振动模式的V-T转移退激发形成主弛豫过程。这种选择最快转移路径的声激发量弛豫方式,造成了大多数可激发气体中声弛豫吸收谱的实测数据只存在一个吸收峰的现象。从而提供了一个可通过计算微观振动能量转移速率分析混合气体声弛豫过程形成机理的理论模型。   相似文献   

18.
To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J.Chem. Phys. 25, 439(1956)] is applied to calculate the energy transition rates of VibrationalVibrational(V-V) and Vibrational-Translational(V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.  相似文献   

19.
锥形颈部赫姆霍兹共振器声学性能预测   总被引:1,自引:0,他引:1  
锥形颈部赫姆霍兹共振器具有更好的低频消声能力,而其声学性能尚无准确解析预测方法。为了研究其声学性能,在声学长度修正的基础上,利用一维解析方法建立了用于计算传递损失的一维修正模型。运用分割法计算锥形管内部声传播的声学长度修正,并给出了声学修正长度计算公式。采用得到的锥形管声学修正长度和一维修正模型,计算出的锥形颈部赫姆霍兹共振器频率与有限元及实验测试结果偏差在2 Hz以内,明显优于不修正的计算结果。表明锥形管声学长度修正法提高了一维解析方法的精度,从而可以快捷准确的预测锥形颈部赫姆霍兹共振器的消声性能。   相似文献   

20.
贾雅琼  王殊  朱明  张克声  袁飞阁 《物理学报》2012,61(9):95101-095101
声在多原子分子气体中传播所引起的弛豫过程是探索气体特性的重要方面. 本文通过研究气体声弛豫过程中振动自由度与平动自由度(V-T)以及振动自由度之间(V-V)的分子能量转移模型, 给出了有效比热容与弛豫时间的分解对应关系及其通用获得方法. 该分解模型与现有的声弛豫模型相比, 反映了分解后的V-T 和V-V弛豫过程中振动比热容与弛豫时间的对应关系, 并发现了较高能级是引起对应声弛豫过程的决定因素. 将基于该分解模型获得的气体声弛豫衰减谱经碰撞直径微调改进后, 比现有理论更接近实验数据, 其结果证明了该分解对应关系的正确性和合理性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号