首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
传统的罗兰圆光谱仪和Czerny-Turner型光谱仪常常采用刻线密的光栅和大的成像焦距,来提高其光谱分辨率,其结果导致成本高和仪器体积庞大。为了克服这一缺点,提出了一种中阶梯光栅和低色散棱镜相结合的光谱仪光学系统设计方法。具体分析了中阶梯光栅的基本原理和使用方法,给出设计基于中阶梯光栅的光谱仪基本步骤,并且实际设计了基于中阶梯光栅的高分辨光谱仪光学系统,焦距为400 mm,可在全谱工作波段180~800 nm成二维光谱。Zemax光学设计软件对光学系统进行光线追迹结果表明,该系统环围能量在单个CCD像素(24 mm×24 mm)内达到50%~70%以上,200 nm处分辨率可达0.00675 nm,完全满足设计指标要求。  相似文献   

2.
基于离轴三反光学系统和多列线阵探测器,设计了一种具有宽波段高光谱分辨率的中阶梯光栅光谱仪.首先,以仪器性能指标为约束优化中阶梯光栅的结构参数,使光栅在保证高色散的同时将宽工作波段折叠重合在较小的光谱级次内,并采用多列线阵探测器采集信号.然后,以离轴三反光学系统作为会聚镜,以离轴抛物镜作为准直镜,实现了高色散宽自由光谱的像差校正.最终,设计的中阶梯光栅光谱仪工作波段为400~900 nm,F数为4.5,光谱分辨率在402.31,541.82,870.48 nm时分别为0.003,0.004,0.005 nm,系统体积为380 mm×325 mm×230 mm.  相似文献   

3.
中阶梯光栅光谱仪是一种高分辨率、高精度新型光谱仪器,其分辨率可达到几万至几十万,结构参数的微小偏差严重影响着其分辨率和波长标定精度,所以精确的装调方法是保证中阶梯光栅光谱仪性能指标的重要环节之一。针对中阶梯光栅光谱仪的结构特点,对中阶梯光栅光谱仪精确装调方法进行了研究。该方法简便、快捷,适用于小体积、封闭式结构设计的中阶梯光栅光谱仪。通过该方法的装调,使中阶梯光栅光谱仪工作状态与设计结果一致。给出了最终波长标定结果,其波长标定误差小于0.002 nm,满足系统性能要求。  相似文献   

4.
光栅的多级衍射杂散光对空间外差拉曼光谱仪的成像质量具有重要影响。为了提高其成像质量,使光谱特征更准确,针对空间外差拉曼光谱仪中光栅产生的多级衍射杂散光进行分析与抑制研究。依据光学传递理论,利用ASAP软件对空间外差拉曼光谱仪中光栅产生的多级衍射杂散光进行仿真与分析,利用挡板、光阑和光学陷阱等方法设计了能够抑制-2.5°~2.5°视场范围内杂散光的结构。结果表明:光栅产生的多级衍射杂散辐射比由4.996×10~(-3)降到了1.57×10~(-8),设计的结构对空间拉曼光谱仪系统内因光栅产生的多级衍射杂散光具有良好的抑制效果,有效提高了系统的成像质量。  相似文献   

5.
中阶梯光栅具有刻线密度低、闪耀角度大、衍射级次高、光谱范围宽、色散率大、光谱分辨率高等一系列突出优点,近年来由于其优良的性能而倍受青睐。作为评价中阶梯光栅质量的衍射效率和杂散光系数直接体现了中阶梯光栅的光学性能,能够准确地进行中阶梯光栅衍射效率和杂散光系数的测量是光栅应用的前提。鉴于此,基于中阶梯光栅的衍射理论创造性地提出用一套系统对中阶梯光栅的衍射效率和杂散光系数进行检测,该系统引入双轨结构,具有结构简单新颖、一机多能等优点。通过理论分析和计算,确定了检测系统的结构参数,设计结果表明: 该检测系统可用于测量190~1 100 nm光谱范围内的中阶梯光栅绝对衍射效率,同时也可用于测量200~800 nm光谱范围内的中阶梯光栅杂散光系数,实现了将衍射效率测量和杂散光测量集于一体的设计思想。  相似文献   

6.
小型快速扫描近红外光谱仪的研制   总被引:3,自引:1,他引:2  
施嫚嫚  黄梅珍 《光子学报》2011,40(4):591-595
介绍了一种基于Czerny-Turner光路结构并采用谐波电机直接驱动光栅的小型快速近红外光谱仪的设计、仿真及初步测试结果.为了减小多次反射及衍射产生的杂散光,运用Cary理论进行光路布局与设计,使用光学软件TracePro进行了仿真,结果显示改进之后的结构有效抑制了系统的杂散光.为了减小体积并提高扫描光谱速度,采用谐...  相似文献   

7.
轻小型中阶梯光栅光谱仪光学设计及性能分析   总被引:1,自引:0,他引:1  
中阶梯光栅光谱仪采用中阶梯光栅与棱镜交叉色散结构,在像面形成二维光谱。影响中阶梯光栅光谱仪分辨率因素较多。分析了针孔直径、光栅参数、棱镜参数、CCD像素尺寸和像差对系统分辨率的影响,得到针孔、光栅、CCD是影响系统分辨率的主要因素,并推导三者在确定系统实际分辨率时相互制约的关系,从而设计一种高分辨率轻小型中阶梯光栅光谱仪。结果表明,轻小型中阶梯光栅光谱仪像差得到充分校正,分辨率达到设计要求。通过对拍摄的汞灯谱图进行还原与标定,实际分辨率为0.038 nm,达到目标值(0.05@ 200 nm)的要求。而普通的光栅光谱仪要达到这样的分辨率,其焦距是500 mm左右,充分体现轻小型的优势。  相似文献   

8.
为了提高中阶梯光栅光谱仪光谱定标的效率和精度,基于谱图还原算法,提出了利用汞灯多条特征谱线联合定标的思想,设计了中阶梯光栅光谱仪的在线定标算法。以汞灯为定标光源进行光谱定标实验,结果表明该算法在谱图偏差不超过限定范围时可以自动修正谱图还原模型,选择的定标波长越多、分布越均匀,定标精度越高。对于250~600nm波段内的中阶梯光栅光谱仪,选择5个以上的定标波长可以使定标精度达到仪器理论分辨率0.01nm。该方法实现了中阶梯光栅光谱仪的自动化光谱定标,使光谱仪在保证高光谱分辨率的前提下更具实用性,具有工程应用价值。  相似文献   

9.
作为一个微弱光信号探测系统,拉曼光谱仪中的杂散光分析可以为其设计提供较大帮助。针对微型拉曼光谱仪系统,结合光学设计和三维建模优化了其光机结构,系统分辨率为0.7 nm,体积为110 mm×95 mm,属便携式微型拉曼光谱仪,并基于杂散光分析软件TracePro对系统进行了光线追迹和仿真分析。首先通过优化孔径光阑初步抑制了入射处带来的杂散光,然后针对系统内部的主要杂散光(光栅零级衍射光)抑制装置即光学陷阱进行了详细分析和设计改进,改进后的光学陷阱较改进前更有效地利用了光谱仪内部空间,且分析结果表明改进后的光学陷阱将杂散光线数量减少了50%,杂散光归一化辐照度强度从10-5降低至10-7,在微型化的同时可有效抑制微型拉曼光谱仪系统中的杂散光,将更加有利于微弱信号的探测,为微型拉曼光谱仪的设计和装调提供了参考。  相似文献   

10.
一般光谱仪的小型化是通过缩小元件尺寸和元件间距离实现的,会降低仪器的性能。为实现高光通量、高光谱分辨率的红外光谱探测,提出一种基于ZnSe平板波导的小型光谱仪的设计方法。说明平板波导结构压缩光束的原理,根据介质中光栅的衍射特性,推导出光谱分辨率与各个参数的关系,给出一个小型光谱仪的具体设计。仪器的光谱范围为8~14μm,光谱分辨率为80 nm,数值孔径为0.3,光学系统是一整块ZnSe平板波导,尺寸为70 mm×70 mm×4 mm。并与相同设计指标下一般Czerny-Turner结构的光谱仪进行对比分析。结果表明基于ZnSe平板波导的小型光谱仪系统尺寸更小,光谱分辨率更高,光通量更大。  相似文献   

11.
施嫚嫚  黄梅珍 《光子学报》2014,40(4):591-595
介绍了一种基于Czerny-Turner光路结构并采用谐波电机直接驱动光栅的小型快速近红外光谱仪的设计、仿真及初步测试结果.为了减小多次反射及衍射产生的杂散光,运用Cary理论进行光路布局与设计,使用光学软件TracePro进行了仿真,结果显示改进之后的结构有效抑制了系统的杂散光.为了减小体积并提高扫描光谱速度,采用谐波电机直接驱动光栅代替传统的电机传动正弦丝杆再驱动光栅的结构,在近红外光波段对样机性能进行了初步测试,并对葡萄糖水溶液进行了定性测量.初步测试结果显示:波长范围800~1 500 nm,扫描速度达到75 nm/s,光谱分辨率6 nm,波长准确性±0.5 nm,重复性≤1 nm,信噪比为1 000∶3,吸光度重复性≤0.008 AU,基线稳定性0.000 5 A/h,简单葡萄糖水溶液的定性测试结果比较清晰地反映了样品的特性.  相似文献   

12.
以宽光谱范围、 高分辨率的中阶梯光栅光谱仪为研制目标,介绍了中阶梯光栅的色散特性,阐述了基于它的交叉色散原理,提出了分辨率优先的中阶梯光栅-棱镜交叉色散光路设计方法,包括高分辨率的主色散光路设计、 分辨叠级的辅助色散光路设计,及主-辅色散光路联合校验三个递进的环节,并结合商用光谱仪进行了实例设计,仿真和实验表明,当光谱范围为400~900 nm时,该分光系统在Hg灯546 nm处的分辨率可达51 000,在Na光589 nm处的分辨率为44 000。  相似文献   

13.
为了满足激光诱导等离子体分析系统(LIPS)对分光系统的分辨率,光谱范围,体积等多方面要求。本文研制了一台中阶梯光栅光谱仪,该光谱仪能同时获得所有谱段范围内的光谱信息,令LIPS系统可实现快速在线实时分析。并且,该光谱仪采用可调节延迟时间的ICCD作为后端探测器,令整个系统可根据实际实验情况选择最优延迟时间接收光谱,提高了整个系统的信噪比。最后,搭建了一套激光诱导等离子体分析系统,对研制的中阶梯光栅光谱仪在系统中的可用性进行验证。通过对合金样品测试,整个系统的分辨率达0.02 nm,光谱范围覆盖190~600 nm。并且研制的LIPS系统光谱重复性较好,特征元素波长提取误差不超过0.01 nm,可较准确的对样品成分进行分析。  相似文献   

14.
近红外微型光谱仪光学系统设计与模拟   总被引:3,自引:0,他引:3  
基于光谱仪基本工作原理和光学设计理论,以系统微型化、且能满足一定光谱范围和分辨率要求为具体设计目标,提出了基于平面衍射光栅分光的交叉式C-T结构的近红外微型光谱仪光学系统结构方案。采用ZEMAX软件对近红外微型光谱仪的分光系统、成像系统进行了优化设计与模拟分析。最终设计与模拟分析结果表明,该光学系统光谱范围为900~1 700 nm,分辨率<10 nm,谱面展宽为12.74 mm,F数为8.128 388,系统体积为51.26 mm×41.81 mm×22 mm。  相似文献   

15.
介绍了Offner凸面光栅成像光谱仪和Dyson凹面光栅成像光谱仪两种常用的同心光学系统。Offner凸面光栅成像光谱仪采用全反射的形式,使用光谱范围很宽,加工、装调较为简单,受外界环境影响较小;Dyson凹面光栅成像光谱仪在体积和尺寸上的优势较为明显,易于实现整体结构的小型化。给出了这两种成像光谱仪的具体设计实例,两种光学系统的成像质量均能达到较为理想的结果,其结构畸变均<0005%,在使用光谱范围内,光谱分辨率均能到达3 nm,具有高质量的光学传递函数。最后,给出了配合成像光谱仪使用的多种前置光学系统的结构形式,并讨论了消除系统杂散光的方法及消除光谱级次重叠的方法。  相似文献   

16.
提出并设计了一个应用数字微镜(DMD)的哈达玛变换近红外光谱仪。以光栅为分光元件,用DMD代替传统的机械式哈达玛编码模板进行光学调制,用In Ga As单点光电二极管探测调制后的光谱信号。综合考虑分辨率、能量利用率、像差和体积等因素,合理选择狭缝长和宽、光栅入射角及透镜焦距,采用光路分段优化法进行光学设计,通过DMD面阵上的狭缝像和探测器上的点斑尺寸等分析设计结果。模拟分辨率优于4 nm,探测器上点斑尺寸小于3 mm,光学系统尺寸为75 mm×25 mm×85 mm。为提高光谱仪对弱光谱信号的探测能力,在系统前加入了一种集光结构,使从光纤出射的光能的利用率理论值提高24.2%。实验结果表明,该光谱仪的光谱分辨率优于6 nm,通过添加集光结构可以大大提高光谱仪的能量利用效率。该光谱仪具有分辨率高、能量利用率高、体积小、成本低等优点,有广阔的应用前景。  相似文献   

17.
星载超光谱成像仪杂散光及其测量   总被引:1,自引:0,他引:1  
超光谱成像仪比一般光谱仪器具有更多的光谱通道和更高的光谱分辨率,而杂散光是影响超光谱成像仪光谱测节精度的重要因素之一,当前光谱仪器的杂散光测量方法尚不能满足超光谱成像仪杂散光检测的需要.作者探讨了此类成像光谱仪杂散光的定义、来源和危害,论述了使用杂散光影响因子di,j描述光谱仪杂散光的可行性和优越性,并给出了杂散光受扰系数fi(λ)和杂散光干扰系数Fi(λ)的定义、物理意义和工程应用价值.最后,介绍了使用窄带滤光片测量星载超光谱成像仪杂散光的测量系统组成、测量步骤和测量结果.结果表明:杂散光影响因子di,j能正确表示光谱仪的杂散光特性,与光源、滤光片、探测器等测量条件无关,而测量效率比谱杂散光系数法至少提高1倍,满足星载超光谱成像仪杂散光测量的工程需要.  相似文献   

18.
以高输出能量和低杂散光为系统设计的中心思想,目的为实现小型化、高分辨率、易于操作维护的光学分光系统。提出以非对称式切尔尼特纳(C-T)结构为分光结构,以平面全息衍射闪耀光栅为分光元件。不仅提高了结构的优化自由度,同时系统的输出能量和杂散光方面都得到了显著的改善。通过Zemax光学软件的模拟和优化,结果表明系统光谱范围在400~800nm内,具有较宽的谱线展宽,光谱分辨优于1nm,系统的光学像差控制在容限范围内。结构体积约为95mm×90mm×44mm,满足高输出能量、高分辨率、低杂散光、小型化的设计。  相似文献   

19.
中阶梯光栅光谱仪信号光斑位置的质心提取算法   总被引:1,自引:0,他引:1  
中阶梯光栅光谱仪二维谱图中,信号光斑位置的提取精度直接影响光谱分析精度,是中阶梯光栅光谱仪研制中的关键问题之一。为保证中阶梯光栅光谱仪的高分辨率特征(其分辨率一般为几千以上,本仪器光谱分辨率为15 000),信号光斑的位置提取误差应小于0.03mm(小于2个像素)。在分析中阶梯光栅光谱仪谱图特征的基础上,提出了一种基于质心法的信号光斑位置提取算法,即通过搜索信号光斑探测窗口进行光斑判读以及信号光斑质心计算,实现了信号光斑位置的精确读取。实验结果表明,采用该算法可以有效地去除噪声光斑的干扰,实现信号光斑位置的快速精确读取,位置提取误差小于2个像素,波长误差小于0.02nm,满足本仪器要求。  相似文献   

20.
临边成像光谱仪是一种对大气遥感探测有重要研究和应用价值的新型空间光学遥感仪器。从大气临边成像光谱探测的原理出发,设计并研制了光栅色散紫外/可见临边成像光谱仪原理样机。该样机采用宽波段折射式消色差前置望远光学系统与改进的Czerny-Turner光谱成像系统匹配的结构型式,其中,前置望远光学系统为像方远心,光谱成像系统为物方远心。工作波段为540~780 nm(一级衍射光谱)和270~390 nm(二级衍射光谱),通过切换可见、紫外带通滤光片来实现两个波段分别探测,质量为8 kg,体积为450 mm×250 mm×200 mm。实验检测结果表明,该样机的空间分辨率为0.45 mrad,光谱分辨率为1.3 nm,均满足设计指标要求,并且具有体积小、质量小等特点,适合空间遥感应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号