首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
叶片正弯对间隙流动的影响   总被引:2,自引:0,他引:2  
详细测量了常规直叶片与正弯叶片栅间隙内与上、下游流场,比较两套叶栅的实验结果发现:叶片正弯减小了叶顶后3/5轴向弦长范围内的横向压力梯度,并消除了上通道涡,因而大大削弱了泄漏流与瑞壁横流之间的相互干扰,相对漏气量与叶栅流动损失都显著降低.  相似文献   

2.
大转角透平叶片弯曲形状对叶栅损失增长和分布的影响   总被引:1,自引:0,他引:1  
对具有大转角的常规直叶片、正弯与反弯叶片的三套大尺寸、低展弦比的矩形叶栅进行了低速风洞实验,详细测量了栅前三个、栅内六个和栅后一个轴向垂直面内的气动参数.实验结果表明,与常规直叶片相比,叶片的反弯曲削弱了马蹄涡和通道涡的强度,并抑制通道涡向叶栅中部发展,从而避免了上、下通道涡的汇合.因此,反弯叶片叶栅中的二次旋涡损失显著降低,流动特性大为改善.  相似文献   

3.
在高负荷涡轮叶栅中应用弯叶片控制流动分离的实验研究   总被引:1,自引:0,他引:1  
本文选择叶型折转角为113°和160°的两种高负荷涡轮平面叶栅,分别开展了直叶栅(STR)和正/反弯曲叶栅的流场测量和流动显示研究,讨论了叶片弯曲对壁面流谱和流动损失的影响.实验结果表明:当叶型折转角为113°时,适当的正弯叶片(DHP)可以减少叶栅流动损失;当叶型折转角为160°时,适当的反弯叶片(DHN)能提高叶栅气动性能.  相似文献   

4.
进口附面层厚度对弯叶片扩压叶栅损失的影响   总被引:4,自引:0,他引:4  
本文通过人工加厚叶栅进口附面层厚度,考察了叶搬进口附面层厚度对弯叶片扩压叶栅损失的影响.实验结果表明,进口附面层厚度增加时,叶栅两端区二次流增强,叶栅损失增大.采用正弯曲叶片在参考进口附面层状态和人工加厚附面层时均未得到叶栅损失的降低,而反弯曲叶栅损失的降低出现在参考进口附面层状态下.  相似文献   

5.
间隙大小对高负荷压气机叶栅流动特性的影响   总被引:1,自引:0,他引:1  
在低速平面叶栅风洞中,对不同间隙大小条件下的高负荷压气机叶栅流动特性进行了实验研究。实验采用五孔气动探针测量了叶栅出口截面参数,得到了该截面的二次流速度矢量分布,并对叶栅下端壁和叶片表面进行了墨迹流动显示.结果表明,叶顶间隙的增加加剧了间隙泄漏流动与通道涡的相互作用和掺混,导致叶栅流道内的二次流结构和形态发生改变;增加叶顶间隙可完全抑制吸力面角区分离,但被间隙泄漏流动带走的低能流体被带到尾缘及其下游位置,加剧了相应位置的流动分离;间隙泄漏流动将引起叶栅总损失的显著下降,损失的大小并不一定与间隙大小成正比.  相似文献   

6.
具有叶尖小翼的压气机叶栅间隙流动分析   总被引:3,自引:0,他引:3  
采用数值模拟方法对利用不同安装方式叶尖小翼控制压气机叶栅间隙流动进行研究。结果表明,不同安装方式叶尖小翼都可以有效降低叶顶泄漏流速,削弱泄漏涡强度。叶尖小翼改变了叶尖负荷及泄漏涡运行轨迹,进而影响了叶尖流场不同涡系之间的相互作用。吸力面小翼削弱了泄漏涡,抑制了通道涡的发展,使得叶栅总损失降低。压力面小翼及组合小翼削弱了泄漏涡,但增强了通道涡及其与泄漏涡之间的相互作用,叶栅总损失增加。  相似文献   

7.
1前言近年来,压气机叶栅中应用弯曲叶片的研究已受到许多学者的重视l‘,‘]并得到了一些有益的结果。我们已完成的正倾斜、正弯曲和S型平面扩压叶棚的实验结果也表明,采用正弯曲方式的叶片可明显改善叶栅根区气流流动状况,延缓壁角失速,降低端区二次流损失【‘,‘1。为了对比在相同的叶片倾斜角下不同叶片堆迭线型式对叶栅流场的影响,进行了应用反弯曲叶片的压气机平面叶栅的实验研究,以期找出比较合理的叶片弯曲型式,从而降低叶栅的二次流损失。本文在0”、土5”和土10“冲角下,对叶片堆送线如图1所示的反弯曲叶片组成的扩压叶…  相似文献   

8.
不同冲角下弯曲扩压叶栅出口流场的实验研究   总被引:4,自引:0,他引:4  
本文在不同冲角下对直叶片、正倾斜叶片、正弯曲叶片和S型叶片组成的四种平面扩压时栅的出口流场进行了详细的实验研究。通过与常规直叶栅的对比,分析了正倾斜叶栅降低根区二次流损失的原因,阐述了正弯曲叶栅在正冲角下改善叶栅两端区流动状况,降低能量损失的机理和S型叶栅降低根区损失、总损失系数对冲角变化不敏感的原因。结果表明,扩压叶栅中采用正弯曲叶片在一定条件下是可行的。  相似文献   

9.
在小转角透平叶栅中,端部横向二次流损失在总损失中占主要比例。对于此类叶栅采用倾斜叶片,压力面与端壁成锐角侧的流动能得到改善。采用压力面与两端壁均成锐角的正弯叶片,可将锐角侧的改善作用引入同一叶栅。对于大转角透平叶栅,上、下通道涡的形成、发展及汇合在叶栅中部产生的二次旋涡损失是总损失的主要部分。在这种情况下,要弄清叶片的倾斜是否仍能改善锐角侧的流动,叶片怎样弯曲才能减少二次旋涡损失,仅测量栅前与栅后流场是远远不够的,必须详细测量流道内部的流动。  相似文献   

10.
早在六十年代初期,Smith提出了弦向倾斜叶片 ̄[1]。叶片的这种倾斜集叶片的后掠(叶片展向与气流不垂直)和上反(叶片表面与端壁斜交)于一身。根据理论分析可知,弦向倾斜叶片与周向倾斜叶片比较,在相同倾斜角下,它更能有效地抑制通道涡的形成和发展 ̄[2]。但是,到现在为止还没有实验数据证实这一计算结果。本文继文献 ̄[3]详细测量了弦向倾斜叶片叶栅由栅前至栅后诸截面上的气动参数。实验结果表明,弦向倾斜对损失的发展起到了与周向倾斜相类似的作用,但是前者比后者减小了叶栅进口段的流向逆压梯度,从而降低了二次旋涡损失。本文还测量了大转角常规直叶栅与反弯叶片叶栅端壁与叶片表面上的静压分布,探讨了反弯叶片降低损失的原因,认为:减小叶栅进口段流向逆压梯度,在叶片吸力面前部形成垂直于端壁的平行静压等值线、在中部形成反“C”型静压等值线,以及在流道内建立沿叶高的反“C”型静压分布,是反弯叶片降低损失的三要素。  相似文献   

11.
叶片倾斜和弯曲对扩压叶栅出口流场的影响   总被引:4,自引:0,他引:4  
本文对具有常规直叶片、周向正倾斜250叶片和正弯曲叶片组成的三种压气机平面叶栅在平面叶栅低速风洞上进行了实验研究,详细测量了零冲角下三种叶栅的出口流场,通过实验结果的分析比较,并与流场显示结果及叶片表面静压测量结果相结合,讨论了叶片倾斜和弯曲对扩压叶栅出口流场的改善作用。  相似文献   

12.
1实验装置与模型叶片倾斜和弯曲的概念是针对小径高比环形叶栅提出来的。在短叶片环形叶栅中采用弯曲叶片的效果如何,本文作者对此进行了研究。同时也讨论了边界条件对静叶出口流场的影响。本实验是在哈尔滨工业大学的环形叶栅风洞上进行的。实验用的三套叶栅为:(1)常规径向叶片;(2)两端倾斜角为15”的弯曲叶片;(3)两端倾斜角为22“的弯曲叶片。其特性参数为:径高比为10.553,弦长b—31.Zmm,叶型安装角风一45.3“,进气角。0—90”,几何平均出气角。1—15”。出口马赫数M=0.26左右。(1)()(3)均为等截面叶栅,(2)…  相似文献   

13.
弯扭静子叶片的环形叶栅试验徐文远,于清,杨弘,王仲奇(哈尔滨工业大学动力工程系哈尔滨150001)关键词:弯扭叶片,环形叶栅,试验随着弯扭叶片理论的发展,它在国内外叶轮机械中的应用日益广泛。在国外,弯扭叶片已应用于新一代航空发动机中,如V2500、P...  相似文献   

14.
弯扭叶片栅内减少能量损失机理研究的新进展   总被引:24,自引:2,他引:22  
根据实验结果和数值计算结果的分析,本文讨论了三维流场的压力分布对弯曲叶片型式的影响。进一步揭示利用弯曲叶片减小叶栅通道内能量损失的机理,弯曲叶片可以改变三维流场内的径向、横向和流向的压力分布。对于膨胀叶栅,采用正弯曲叶片可以显著的降低叶栅中的总能量损失系数。对于叶展中部伴有边界层强烈分离的导向叶栅,采用反弯曲叶片将有利于减小总能量损失。  相似文献   

15.
周向弯曲低压轴流风机叶顶泄漏流动数值研究   总被引:8,自引:0,他引:8  
本文采用数值模拟的方法,对三种带有周向弯曲叶片的低压轴流通风机(原型叶轮、周向前弯及后弯叶轮)的叶顶泄漏流动进行了研究。在数值计算与试验测量结果较为吻合的条件下,从流场和压力场等不同角度分析探讨了叶片周向弯曲后,叶顶泄漏流动和泄漏涡的形成和发展规律。数值计算结果表明,叶顶周向前弯加剧了泄漏涡与主流的掺混;周向后弯叶轮比前弯叶轮有助于减弱叶顶泄漏流动;强度大、衰减慢的泄漏涡,降低了叶顶的通流能力,同时与主流的掺混加剧也增大了叶轮的端部损失;此外,顶部间隙高度的增加,泄漏流动加强,旋涡的起始点更靠近叶片后缘。  相似文献   

16.
吸力面小翼对扩压叶栅间隙泄漏的影响   总被引:1,自引:0,他引:1  
采用数值模拟方法对利用吸力面小翼方式控制压气机叶栅间隙流动进行研究。结果表明,附加吸力面小翼可以降低叶顶泄漏流速,削弱泄漏涡强度,使得泄漏涡区损失降低。不同宽度吸力面小翼在不同间隙下部可以较好地减少叶尖泄漏,在叶顶间隙为3.3%叶高时,附加相对宽度为0.5的吸力面小翼可使损失降低4.7%。叶顶压差的降低及对泄漏涡结构的改变是吸力面小翼降低泄漏掺混损失的主要原因。  相似文献   

17.
本文采用微型球头五孔探针对低展弦比大转角透平直叶片栅和反弯曲叶片栅栅内外流场进行了详尽测量,并开设静压孔测取了叶栅端壁和叶片表面的静压分布。根据实验结果,作者全面分析了叶片反弯曲对通道涡及静压场的影响,并明确提出:在大转角透平叶栅中,叶片反弯曲后,由叶片力在吸力面前部产生的沿叶高方向的反“C”型静压分布是控制通道涡减弱的关键,这也是叶片反弯曲作用的本质所在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号