首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Knizhnik–Zamolodchikov–Bernard (KZB) equation on an elliptic curve with a marked point is derived by classical Hamiltonian reduction and further quantization. We consider classical Hamiltonian systems on a cotangent bundle to the loop group L(GL(N, C)) extended by the shift operators, to be related to the elliptic module. After reduction, we obtain a Hamiltonian system on a cotangent bundle to the moduli of holomorphic principle bundles and an elliptic module. It is a particular example of generalized Hitchin systems (GHS) which are defined as Hamiltonian systems on cotangent bundles to the moduli of holomorphic bundles and to the moduli of curves. They are extensions of the Hitchin systems by the inclusion the moduli of curves. In contrast with the Hitchin systems, the algebra of integrals are noncommutative on GHS. We discuss the quantization procedure in our example. The quantization of the quadratic integral leads to the KZB equation. We present an explicit form of higher quantum Hitchin integrals which, upon reducing from GHS phase space to the Hitchin phase space, gives a particular example of the Beilinson–Drinfeld commutative algebra of differential operators on the moduli of holomorphic bundles.  相似文献   

2.
也谈正则动量算符之争   总被引:3,自引:3,他引:0  
徐湛 《大学物理》1998,17(5):28-29,47
讨论了平直空间曲线坐标系中质点运动的两种不同的量子化假设,比较了它们在物理思想和实际操作上的区别和优劣。  相似文献   

3.
In this paper, we consider the problem of quantization of classical Stäckel systems and the problem of separability of related quantum Hamiltonians. First, using the concept of Stäckel transform, natural Hamiltonian systems from a given Riemann space are expressed by some flat coordinates of related Euclidean configuration space. Then, the so-called flat minimal quantization procedure is applied in order to construct an appropriate Hermitian operator in the respective Hilbert space. Finally, we distinguish a class of Stäckel systems which remains separable after any of admissible flat minimal quantizations.  相似文献   

4.
5.
Consider a physical system for which a mathematically rigorous geometric quantization procedure exists. Now subject the system to a finite set of irreducible first class (bosonic) constraints. It is shown that there is a mathematically rigorous BRST quantization of the constrained system whose cohomology at ghost number zero recovers the constrained quantum states. Moreover this space of constrained states has a well-defined Hilbert space structure inherited from that of the original system. Treatments of these ideas in the physics literature are more general but suffer from having states with infinite or zero "norms" and thus are not admissible as states. Also BRST operators for many systems require regularization to be well-defined. In our more restricted context, we show that our treatment does not suffer from any of these difficulties.  相似文献   

6.
We analyze the quantization of dynamical systems that do not involve any background notion of space and time. We give a set of conditions for the introduction of an intrinsic time in quantum mechanics. We show that these conditions are a generalization of the usual procedure of deparametrization of relational theories with Hamiltonian constraint that allow one to include systems with an evolving Hilbert space. We apply our quantization procedure to the parametrized free particle and to some explicit examples of dynamical systems with an evolving Hilbert space. Finally, we conclude with some considerations concerning the quantum gravity case.  相似文献   

7.
汪克林  高先龙  曹则贤 《物理》2021,(3):177-181
外尔于1918年引入的规范变换实际上是相位变换而非真正的尺度变换,但规范不变性、规范理论等概念都沿袭了下来。我们发现,针对由量子化条件[x,p]=ih而来的量子体系之本征值问题存在规范变换,或者说尺度变换,x→x/α,p→αp,该变换保体系的能量谱不变。量子谐振子、氢原子问题及一类多体问题的精确解析解证实了这一点。量子化条件[x,p]=ih看来是个对量子力学很强的约束,不止于能量的量子化。这个规范变换提醒我们相空间的体积及其量子化才是物理的关键,这也是量子力学和统计物理在潜意识里一直沿用却未予关注的思路。有趣的是,从量子谐振子体系的相空间表述似乎不能导向这个结论。如同规范理论所断言的电磁学量在给定坐标系下的数值表征与标度无关,我们认为量子体系的物理量,如能量谱等,在给定坐标系下的数值表征亦应与标度无关。此尺度变换与德布罗意关系相恰。  相似文献   

8.
Deformation quantization, which achieves the passage from classical mechanics to quantum mechanics by the replacement of the pointwise multiplication of functions on phase space by the star product, is a powerful tool for treating systems involving bosonic degrees of freedom, both in quantum mechanics and in quantum field theory. In the present paper we show how these methods may be naturally extended to systems involving fermions. In particular we show how supersymmetric quantum mechanics can be formulated in this approach and consider examples involving both non-relativistic and relativistic systems.  相似文献   

9.
It is shown that quantum mechanics on noncommutative (NC) spaces can be obtained by canonical quantization of some underlying constrained systems. Noncommutative geometry arises after taking into account the second class constraints presented in the models. It leads, in particular, to a possibility of quantization in terms of the initial NC variables. For a two-dimensional plane we present two Lagrangian actions, one of which admits addition of an arbitrary potential. Quantization leads to quantum mechanics with ordinary product replaced by the Moyal product. For a three-dimensional case we present Lagrangian formulations for a particle on NC sphere as well as for a particle on commutative sphere with a magnetic monopole at the center, the latter is shown to be equivalent to the model of usual rotor. There are several natural possibilities to choose physical variables, which lead either to commutative or to NC brackets for space variables. In the NC representation all information on the space variable dynamics is encoded in the NC geometry. Potential of special form can be added, which leads to an example of quantum mechanics on the NC sphere.  相似文献   

10.
The problem of canonical quantization of singular systems in a finite volume is studied by analysing a non-relativistic field theory. Firstly, we take the boundary conditions (BCs) as primary Dirac constraints. The quantization is performed canonically using Dirac’s procedure. Then, we quantize this model canonically in the classical solution space. We show that these two different quantization schemes are equivalent although they start from different settings.  相似文献   

11.
The quantization for a system containing subsidiary constraints (in configuration space) with a singular Lagrangian is studied, in certain case which can be brought into the theoretical framework of constrained Hamiltonian system. A modified Dirac-Bergmann algorithm for the calculation of all phase-space constraints in those systems is derived. The path integral quantization is formulated by using the Faddeev-Senjanovic scheme. The classical and quantum canonical symmetries (Noether theorem in canonical formalism) are established for such a system. An example is given to illustrate that the connection between the symmetry and conservation law in classical theory are not always validity in the quantum theory.  相似文献   

12.
S.G. Rajeev 《Annals of Physics》2007,322(7):1541-1555
We show that a large class of dissipative systems can be brought to a canonical form by introducing complex co-ordinates in phase space and a complex-valued hamiltonian. A naive canonical quantization of these systems lead to non-hermitean hamiltonian operators. The excited states are unstable and decay to the ground state. We also compute the tunneling amplitude across a potential barrier by solving the dissipative version of the Schrödinger equation. We then generalize the formalism to cases where the configuration space is a curved Riemannian manifold.  相似文献   

13.
The rigorous equivalence of the Schrödinger and Heisenberg pictures requires that one uses Born–Jordan quantization in place of Weyl quantization. We confirm this by showing that the much discussed “ angular momentum dilemma” disappears if one uses Born–Jordan quantization. We argue that the latter is the only physically correct quantization procedure. We also briefly discuss a possible redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution associated with Born–Jordan quantization, and which has proven to be successful in time-frequency analysis.  相似文献   

14.
In addition to the well-known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantized, thus introducing strong quantum correlations. The corresponding quantization rules are also established. This opens the door for developing computationally tractable methods to calculate eigenstates of chaotic systems.  相似文献   

15.
Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems, for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but-quantally shows resonant transport, no saturation, and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.  相似文献   

16.
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a ,-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the results derived from a *-Exponential expansion in deformation quantization.  相似文献   

17.
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a *-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the resu lts derived from a *-Exponential expansion in deformation quantization.  相似文献   

18.
The Hamilton-Jacobi method of constrained systems is discussed. The equations of motion for a singular system with time dependent constraints are obtained as total differential equations in many variables. The integrability conditions for the relativistic particle in a plane wave lead us to obtain the canonical phase space coordinates without using any gauge fixing condition. As a result of the quantization, we get the Klein-Gordon theory for a particle in a plane wave. The path integral quantization for this system is obtained using the canonical path integral formulation method.  相似文献   

19.
We review and compare different variational formulations for the Schrödinger field. Some of them rely on the addition of a conveniently chosen total time derivative to the hermitic Lagrangian. Alternatively, the Dirac-Bergmann algorithm yields the Schrödinger equation first as a consistency condition in the full phase space, second as canonical equation in the reduced phase space. The two methods lead to the same (reduced) Hamiltonian. As a third possibility, the Faddeev-Jackiw method is shown to be a shortcut of the Dirac method. By implementing the quantization scheme for systems with second class constraints, inconsistencies of previous treatments are eliminated.  相似文献   

20.
Current views link quantization with dynamics. The reason is that quantum mechanics or quantum field theories address to dynamical systems, i.e., particles or fields. Our point of view here breaks the link between quantization and dynamics: any (classical) physical system can be quantized. Only dynamical systems lead to dynamical quantum theories, which appear to result from the quantization of symplectic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号