首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigate the structure of trapped Bose-Einstein condensates (BECs) with long-range anisotropic dipolar interactions. We find that a small perturbation in the trapping potential can lead to dramatic changes in the condensate's density profile for sufficiently large dipolar interaction strengths and trap aspect ratios. By employing perturbation theory, we relate these oscillations to a previously identified "rotonlike" mode in dipolar BECs. The same physics is responsible for radial density oscillations in vortex states of dipolar BECs that have been predicted previously.  相似文献   

3.
Weak dipolar effects in atomic Bose-Einstein condensates (BECs) have recently been predicted to develop spin textures. However, observation of the spin textures requires us to decrease the magnetic field down to approximately 10 microG for spin-1 alkali BECs, so that they are not washed out by the Zeeman effect. We present a scheme to observe the magnetic dipole-dipole interaction in alkali BECs under a realistic magnetic field of approximately 100 mG. Our scheme enables us to extract genuine dipolar effects and should apply also to (52)Cr BECs.  相似文献   

4.
《Physics letters. A》2019,383(25):3175-3179
Two different kinds of spin-orbit (SO) coupling are often investigated theoretically and experimentally in atomic Bose-Einstein condensates (BECs), namely, Rashba and Dresselhaus SO couplings. We show that ground states for these two SO-coupled BECs share lots of similarities and it is impossible to distinguish them from the observation of ground states. We find that an Ioffe-Pritchard magnetic field can be utilized as a tool to distinguish them. In the presence of the Ioffe-Pritchard magnetic field, ground states manifest distinctively for the Rashba and Dresselhaus SO-coupled BECs.  相似文献   

5.
6.
We study the properties of a solid-solid close-packed to body-centered tetragonal transition in a colloidal suspension via fluorescence confocal laser scanning microscopy, in three dimensions and in real space. This structural transformation is driven by a subtle competition between gravitational and electric dipolar field energy, the latter being systematically varied via an external electric field. The transition threshold depends on the local depth in the colloidal sediment. Structures with order intermediate between close-packed and body-centered tetragonal were observed, with these intermediate structures also being stable and long lived. This is essentially a colloidal analogue of an "atomic-level" interfacial structure. We find qualitative agreement with theory (based purely on energetics). Quantitative differences can be attributed to the importance of entropic effects.  相似文献   

7.
Interaction between two coupled Bose-Einstein condensates (BECs) is investigated by the variational approach in two finite traps, and the effects of the spacing between the two traps on dynamics of the two BECs are analyzed. The spacing determines the stable condition of stationary states, affects the existence condition of each BEC, and changes the switching and self-trapping effects on the two BECs. The dynamic mechanism is demonstrated by performing a coordinate of classical particle moving in an effective potential field, and confirmed by the evolution of the atom population transferring ratio.  相似文献   

8.
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.  相似文献   

9.
New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose–Einstein condensates (BECs) described by a three-dimensional (3D) Gross–Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross–Pitaevskii–Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blow-up of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adoption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs.  相似文献   

10.
We report observations of vortex formation by merging and interfering multiple (87)Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a single harmonic potential well is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated BECs. The BECs may either automatically merge together during their growth, or for high-energy barriers, the BECs can be merged together by barrier removal after their formation. Either process may instigate vortex formation in the resulting BEC, depending on the initially indeterminate relative phases of the condensates and the merging rate.  相似文献   

11.
It is shown that large percolation-enhanced nonlinear scattering occurs in metal-dielectric random composites near the percolation threshold. The enhancement is due to giant local electric field fluctuations that are extremely inhomogeneous and consist of spatially separated sharp peaks, "hot" spots, where the local field is greater by many orders of magnitude than the applied field.  相似文献   

12.
The interaction between the electric field E and spins in multiorbital Mott insulators is studied theoretically. We find a generic coupling mechanism, which works for all crystal lattices and which does not involve relativistic effects. It couples E to the "internal" electric field e originating from the dynamical Berry phase. We discuss several effects of this interaction: (i) an unusual electron spin resonance, (ii) the displacement of spin textures in an applied electric field, and (iii) the resonant absorption of circularly polarized light by Skyrmions, magnetic bubbles, and magnetic vortices.  相似文献   

13.
赵文静  文灵华 《物理学报》2017,66(23):230301-230301
玻色-爱因斯坦凝聚体与势垒或势阱的量子反射及干涉是考察宏观物质波奇特物性的最有效途径之一.利用传播子方法和基于冷原子实验广泛采用的飞行时间吸收成像方案,研究自旋相关玻色-爱因斯坦凝聚体在半无限深势阱中的反射和干涉演化动力学,得到了自旋相关的凝聚体波函数的严格解析解.结果表明,当自旋相关光晶格关闭后,非局域于不同格点中相同自旋态的物质波在自由膨胀过程中发生量子干涉,形成了对比度明显的干涉条纹.与此同时,扩张的自旋相关物质波包与半无限深势阱壁相遇发生量子反射,反射波与入射波产生二重干涉,在密度分布两边对称的局部位置出现剧烈的振荡,干涉条纹表现出显著的调制效应.分析讨论了自旋态、相干输运距离和相对相位等因素对干涉条纹的影响.该研究有助于促进对自旋相关凝聚体宏观量子特性的认识,为深入检验自旋相关光晶格中凝聚体干涉的理论模型和物理机理提供依据和新方案.  相似文献   

14.
Quantum hydrodynamics in superfluid helium and atomic Bose–Einstein condensates (BECs) has been recently one of the most important topics in low temperature physics. In these systems, a macroscopic wave function (order parameter) appears because of Bose–Einstein condensation, which creates quantized vortices. Turbulence consisting of quantized vortices is called quantum turbulence (QT). The study of quantized vortices and QT has increased in intensity for two reasons. The first is that recent studies of QT are considerably advanced over older studies, which were chiefly limited to thermal counterflow in 44He, which has no analog with classical traditional turbulence, whereas new studies on QT are focused on a comparison between QT and classical turbulence. The second reason is the realization of atomic BECs in 1995, for which modern optical techniques enable the direct control and visualization of the condensate and can even change the interaction; such direct control is impossible in other quantum condensates like superfluid helium and superconductors. Our group has made many important theoretical and numerical contributions to the field of quantum hydrodynamics of both superfluid helium and atomic BECs. In this article, we review some of the important topics in detail. The topics of quantum hydrodynamics are diverse, so we have not attempted to cover all these topics in this article. We also ensure that the scope of this article does not overlap with our recent review article (arXiv:1004.5458), “Quantized vortices in superfluid helium and atomic Bose–Einstein condensates”, and other review articles.  相似文献   

15.
We study the ground-state phases of two-dimensional rotating spin–orbit coupled spin-1/2 Bose–Einstein condensates (BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin–orbit coupling and rotation leads to a variety of ground-state phase structures. In the weakly rotation regime, as the increase of gradient magnetic field strength, the BECs experiences a phase transition from the unstable phase to the single vortex-line phase. The unstable phase presents the vortex lines structures along the off-diagonal direction. With magnetic field gradient strength increasing, the number of vortex lines changes accordingly. As the magnetic field gradient strength increases further, the single vortex-line phase with a single vortex line along the diagonal direction is formed. The phase diagram shows that the boundary between the two phases is linear with the relative repulsion λ≥1 and is nonlinear with λ<1. In the relatively strong rotation regime, in addition to the unstable phase and the single vortex-line phase, the vortex-ring phase is formed for the strong magnetic field gradient and rapid rotation. The vortex-ring phase shows the giant and hidden vortex structures at the center of ring. The strong magnetic field gradient makes the number of the vortices around the ring unchanged.  相似文献   

16.
We consider the Gross-Pitaevskii(GP) model of a Bose-Einstein Condensate(BEC) with non-local s-wave interactions. The non-locality is represented by corrections to the local GP equation. Due to such corrections to the GP equation, there arise corrections to the free energy functional as well. We present here a proof of the exact correspondence between the free energy and the dynamics for typical terms appearing while considering corrections to the GP equation at any order. This non-trivial correspondence can be used to study BECs perturbatively while going beyond the Fermi pseudopotential.  相似文献   

17.
Stability of highly charged metal clusters in the electric field of an external ion is investigated with the classical liquid drop model. We study the optimum shape of the cluster which has a local minimum of the total energy, taking account of the effects of the surface charge polarization on the Coulomb energy and the cluster deformation on the surface energy. We find that the cluster deformation greatly affects the total energy of the system and that a cluster with a fissility larger than some critical value 0.7-0.8 can become unstable against deformation. We investigate the local competition between the Coulomb force and the surface tension at the cluster surface and show that the surface charge polarization which is induced by the external electric field significantly affects the shape of the cluster and its stability. Received 5 November 2002 / Received in final form 27 January 2003 Published online 11 March 2003 RID="a" ID="a"e-mail: hamada@konan-u.ac.jp  相似文献   

18.
19.
We report the Bose-Einstein condensation (BEC) of the most magnetic element, dysprosium. The Dy BEC is the first for an open f-shell lanthanide (rare-earth) element and is produced via forced evaporation in a crossed optical dipole trap loaded by an unusual, blue-detuned and spin-polarized narrowline magneto-optical trap. Nearly pure condensates of 1.5 × 10(4) (164)Dy atoms form below T = 30 nK. We observe that stable BEC formation depends on the relative angle of a small polarizing magnetic field to the axis of the oblate trap, a property of trapped condensates only expected in the strongly dipolar regime. This regime was heretofore only attainable in Cr BECs via a Feshbach resonance accessed at a high-magnetic field.  相似文献   

20.
T MITHUN  K PORSEZIAN 《Pramana》2014,82(2):307-312
We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in F = 2 spinor Bose-Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号