首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the topological excitations of rotating spin-1 ferromagnetic Bose–Einstein condensates with spin–orbit coupling (SOC) in an in-plane quadrupole field. Such a system sustains a rich variety of exotic vortex structures due to the spinor order parameter and the interplay among in-plane quadrupole field, SOC, rotation, and interatomic interaction. For the nonrotating case, with the increase of the quadrupole field strength, the system experiences a transition from a coreless polar-core vortex with a bright soliton to a singular polar-core vortex with a density hole. Without rotation but with a fixed quadrupole field, when the SOC strength increases, the system transforms from a central Mermin–Ho vortex into a criss-crossed vortex–antivortex string lattice. For the rotating case, we give a phase diagram with respect to the quadrupole field strength and the SOC strength. It is shown that the rotating system supports four typical quantum phases: vortex necklace, diagonal vortex chain cluster, single diagonal vortex chain, and few vortex states. Furthermore, the system favors novel spin textures and skyrmion excitations including an antiskyrmion, a criss-crossed half-skyrmion–half-antiskyrmion lattice, a skyrmion-meron necklace, a symmetric half-skyrmion lattice, and an asymmetric skyrmion-meron lattice.  相似文献   

2.
The experimental and theoretical research of spin–orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin–orbit coupling parameters, we discuss the fundamental properties and general applications of spin–orbit-coupled Bose–Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin–orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin–orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin–orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system.  相似文献   

3.
We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.  相似文献   

4.
5.
We consider an effective two-dimensional Bose–Einstein condensate with some spin–orbit coupling (SOC) and a rotation term in an external harmonic potential. We find the striped state, and analyze the effects of SOC, the external potential, and the rotation frequency/direction on the profile and the stability of the striped state. Without the rotation term, the two spinor components exhibit striped pattern, and the numbers of stripes in the two components are always an odd–even or an even–odd. With the increase of the SOC strength, the number of stripes in both components increases, while the difference of the striped numbers is always one. After adding the rotation term, the profiles of the spinor components change qualitatively, and the change regulation of the striped numbers differs, while the difference of the striped numbers is still one. In addition, we find that the rotation direction only makes the striped state of the two spinor components exchange each other, though the clockwise and counterclockwise rotation directions are inequivalent with the presence of SOC. Such regulation is different from the previous study. And the rotation frequency gives rise to the transition from the striped state to a mixture of the striped state and vortex state. Furthermore, we prove the stability of these states by the evolution and linear stability analysis.  相似文献   

6.
We study solitons in a spin-1 Bose–Einstein condensates with SU(3) spin–orbit coupling. We obtain the ground state and the metastable solution for solitons with attractive interactions by the imaginary-time evolution method. Compared with the SU(2) spin–orbit coupling, it is found that the solitons in SU(3) spin–orbit coupling show a new feature due to breaking the symmetry. The solitons called the composite solitons have mixing manifolds of ferromagnetic and antiferromagnetic states. This has stimulated people to study the topological excitation properties of SU(3) spin–orbit coupling and it is expected to find new quantum phases.  相似文献   

7.
李吉  刘伍明 《物理学报》2018,67(11):110302-110302
利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.  相似文献   

8.
《Physics letters. A》2020,384(22):126430
We study the ground-state properties of two-dimensional Bose-Einstein condensate with spin-orbit coupling (SOC) loaded in the harmonic-plus-radial potential. In the immiscible regime, odd-petal-number states can be found. By increasing the effective atom interactions, the odd-petal-number states transform into a phase where petals in the outer annular potential trough are coexisting with inner longitudinal stripes, and finally become the ‘serpentine’ stripe structures. In a rotating system, the giant vortex (GV) can be stabilized and controllable. The favorable conditions for GV are relatively small atom interactions, intermediate rotation frequency and intermediate SOC strength. Further, this type of harmonic-plus-radial trapping with a strong radial part is a suitable choice to create GV state.  相似文献   

9.
刘静思  李吉  刘伍明 《物理学报》2017,66(13):130305-130305
通过虚时演化方法研究了具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构.结果发现:面内四极磁场和旋转双重作用可导致中央Mermin-Ho涡旋的产生;随着磁场梯度增强,Mermin-Ho涡旋周围环绕的涡旋趋向对称化排布;在四极磁场下,密度相互作用和自旋交换相互作用作为体系的调控参数,可以控制Mermin-Ho涡旋周围的涡旋数目;该体系自旋结构中存在双曲型meron和half-skyrmion两种拓扑结构.  相似文献   

10.
In a direct scanning tunneling spectroscopy experiment we address the problem of the quantum vortex phases in strongly confined superconductors. The strong confinement regime is achieved in in situ grown ultrathin single nanocrystals of Pb by tuning their lateral size to a few coherence lengths. Upon an external magnetic field, the scanning tunneling spectroscopy revealed novel ultradense arrangements of single Abrikosov vortices characterized by an intervortex distance up to 3 times shorter than the bulk critical one. At yet stronger confinement we discovered the giant vortex phase; the spatial evolution of the excitation tunneling spectra in the cores of these unusual quantum objects was explored. We anticipate the giant vortex phase to be a common feature of other confined quantum condensates such as superfluids, Bose-Einstein condensates of cold atoms, etc.  相似文献   

11.
Interactions between magnetic and vortex rings are studied over a wide interval of interaction parameter values ranging from negligible magnetic effects on vorticity structure, to very strong effects. The employed interaction parameter measures the strength of the Lorentz force in units of the inertial force. At small interaction parameters, the vortex ring shapes part of the magnetic ring into a dissipative, curved, magnetic sheet structure. At high interaction parameters, the Lorentz force acts as an agent of proliferation of vortex rings, since it generates two vortex rings adjacent to the original magnetic structure, one of which is pulled (together with the advected magnetic field) into the wake of the original vortex ring, while the other escapes, ready to interact with another magnetic ring. Once within the initial vortex ring wake, both magnetic and vorticity structures are stretched into spirals, whilst the Lorentz force continuously generates new, intense vorticity at high magnetic field sites.  相似文献   

12.

We consider theoretically the formation of vortex in rotating Bose-Einstein condensates (BECs) with higher order interaction (HOI). Our results are obtained from the twodimensional Gross-Pitaevskii equation. As the first step, for the certain number vortices, we discuss the ground state properties and show that the critical rotation frequency for HOI is smaller than those without HOI. As the increasing of HOI strength, the critical rotation frequency decreases. In addition, we verify that the Feynman rule is meet well. Moreover, we study the vortex dynamics.Numerical results indicate that the angular momentum remains almost unchanged irrespective of the HOI strength. The time taken for the nucleation of vortices pays less for strong HOI. These results suggest that the HOI is favorable to rotate the condensate, and this mechanism is useful to control the vortex number in BECs.

  相似文献   

13.
Hao Zhu 《中国物理 B》2022,31(4):40306-040306
We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.  相似文献   

14.
This preliminary work has focused on the static transitions between the multivortex states interacting with square arrays of the mesoscopic pinning sites in superconducting samples. Our results were obtained from an extensive series of numerical simulations as functions of the magnetic field, pinning radius, and sample size. We have presented a wide range of multivortex configurations from commensurate dimer states to more concentric vortex shells at the matching fields. The stability of these states was also studied by means of the current-voltage V(I) curves which illustrate dynamic phase transitions as a function of applied driving force. These transitions manifested themselves as either a sudden jump in velocity or a nonlinear increase with velocity fluctuations in V(I) curves. We have investigated whether that the phase transitions between the pinned regime and the elastic flow regime are indicative of the stability of the initial vortex states. The variety of intermediate flow phases is attributed to large pinning size (reentrant behavior), strong commensurability and caging effects. In particular, three-shell vortex structures were obtained in the presence of larger pinning sites at adequate matching magnetic fields.  相似文献   

15.
The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V3Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment–magnetic field isotherms are reversible and exhibit features that formally resemble the pressure–volume isotherms of the liquid–gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius–Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.  相似文献   

16.
In single crystals of 2H-NbSe2, we identify for the first time a crossover from a weak collective to a strong pinning regime in the vortex state which is not associated with the peak effect phenomenon. Instead, we find the crossover is associated with an anomalous history dependent magnetization response. In the dc magnetic field (Bdc)-temperature (T) vortex matter phase diagram we demarcate this pinning crossover boundary. We also delineate another boundary which separates the strong pinning region from a thermal fluctuation dominated regime, and find that a peak effect appears on this boundary.  相似文献   

17.
The ground-state phases of two-dimensional spin-2 Bose–Einstein condensate with Rashba spin–orbit coupling are studied. For the equal strengths of the density-density interaction and the spin-exchange interaction, we classify the ground-state phases into four types of stable phases with spin–orbit coupling and spin singlet-pairing interaction in momentum space, i.e., the ring phase, the stripe phase, the triangular phase and the square phase. With increasing the spin–orbit coupling strength, the system undergoes a sequence phase transitions from the ring phase to the stripe phase, and to the square phase for the attractive spin singlet-pairing interaction (c2<0), and the system undergoes a sequence phase transitions from the ring phase to the stripe phase, to the triangular phase, and to the square phase for the repulsive spin singlet-pairing interaction (c2>0).  相似文献   

18.
We calculate the energy levels of low-lying states of a two-electron quantum ring under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The ground-state electronic structures and angular momentum transitions as a function of the strength of a magnetic field have been revealed.  相似文献   

19.
We investigate the topological phases of silicene and germanene that arise due to the strong spin–orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Linear and nonlinear propagation of magnetic electron drift vortex waves in a nonuniform magnetic field is investigated by means of a generalized adiabatic law which takes into account the effect of strong fields and reduces in the appropriate limits to several well known energy conservation equations in a collisionless plasma. In the linear limit, an instability is shown to exist, whereas in the nonlinear regime, steady-state dipole vortices associated with the electron drift vortex waves may appear. The anomalous electron energy transport associated with the unstable magnetic electron drift vortex waves is investigated by means of a quasilinear theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号