首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This report presents a simple method named as sp-ECR to determine the molar extinction coefficient ratio (γ(λex)) of acceptor-to-donor in living cells at excitation wavelength λex, which is closely associated with the acceptor cross-excitation, the hardest issue of FRET quantification. sp-ECR determines γ(λex) by spectrally unmixing the emission spectrum of a donor–acceptor tandem construct under λex excitation without any additional references, such that this method can be performed under optimal imaging condition. We used sp-ECR to measure the γ(458) of Venus/Cerulean in living HepG2 cells on a confocal microscope, and the measured values were consistent with those obtained by lux-FRET method. We also used sp-ECR to measure the γ(458) values of Venus/Cerulean and YFP/CFP as well as YFP/GFP, the commonly used FRET FPs pairs in other two kinds of cancer cell lines on the confocal microscope, and found that the extinction coefficients of FPs depended on cell lines. After predetermining the γ(458) of Venus to ECFP, we used sp-ECR method to monitor the staurosporine (STS)-induced dynamical caspase-3 activation in single live A549 cells expressing SCAT3 by spectrally resolving the absolute FRET efficiency of SCAT3, and found that STS-induced caspase-3 activation in single cells is a very rapid process within 20 min.  相似文献   

2.
The current advances of fluorescence microscopy and new fluorescent probes make fluorescence resonance energy transfer (FRET) a powerful technique for studying protein-protein interactions inside living cells. It is very hard to quantitatively analyze FRET efficiency using intensity-based FRET imaging microscopy due to the presence of autofluorescence and spectral crosstalks. In this study, we for the first time developed a novel photobleaching-based method to quantitatively detect FRET efficiency (Pb-FRET) by selectively photobleaching acceptor. The Pb-FRET method requires two fluorescence detection channels: a donor channel (CH 1 ) to selectively detect the fluorescence from donor, and a FRET channel (CH 2 ) which normally includes the fluorescence from both acceptor and donor due to emission spectral crosstalk. We used the Pb-FRET method to quantitatively measure the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside single living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by Pb-FRET inside living cells was verified by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM). The temporal resolution of Pb-FRET method is in second time-scale for ROI photobleaching, even in microsecond time-scale for spot photobleaching. Our results demonstrate that the Pb-FRET method is independent of photobleaching degree, and is very useful for quantitatively monitoring protein-protein interactions inside single living cell.  相似文献   

3.
Confocal fluorescence imaging and fluorescence resonance energy transfer (FRET) technology have been widely used to study protein–protein interactions in living cells. However, it is very difficult to quantitatively analyze FRET efficiency due to the excitation spectral crosstalk and emission spectral crosstalk between donor and acceptor. In this study, we developed a novel method to quantitatively obtain the FRET efficiency by fitting the emission spectra (FES) of donor–acceptor pair, and this method is free from both excitation and emission spectral crosstalk. We used the FES method to quantitatively monitor the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by FES are consistent with that by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM) in living cells stably expressing SCAT3. In this study, the FES was also used to analyze the caspase-3 activation in living cells during anti-cancer drug such as taxol, Artesunate (ART) or Dihydroartemisinin (DHA) treatment. Our results showed that ART or DHA induced apoptosis by a caspase-3-dependent manner, while caspase-3 was not involved in taxol-induced cell death.  相似文献   

4.
We applied spFRET microscopy for direct observation of intranucleosomal DNA dynamics. Mononucleosomes, reconstituted with DNA containing a FRET pair at the dyad axis and exit of the nucleosome core particle, were immobilized through a 30 bp DNA tether on a polyethyleneglycol functionalized slide and visualized using Total Internal Reflection Fluorescence microscopy. FRET efficiency time-traces revealed two types of dynamics: acceptor blinking and intramolecular rearrangements. Both Cy5 and ATTO647N acceptor dyes showed severe blinking in a deoxygenated buffer in the presence of 2% βME. Replacing the triplet quencher βME with 1 mM Trolox eliminated most blinking effects. After suppression of blinking three subpopulations were observed: 90% appeared as dissociated complexes; the remaining 10% featured an average FRET efficiency in agreement with intact nucleosomes. In 97% of these intact nucleosomes no significant changes in FRET efficiency were observed in the experimentally accessible time window ranging from 10 ms to 10’s of seconds. However, 3% of the intact nucleosomes showed intervals with reduced FRET efficiency, clearly distinct from blinking, with a lifetime of 120 ms. These fluctuations can unambiguously be attributed to DNA breathing. Our findings illustrate not only the merits but also typical caveats encountered in single-molecule FRET studies on complex biological systems.  相似文献   

5.
荧光共振能量转移(FRET)广泛用于研究分子间的距离以及相互作用,但是由于光谱的串扰和荧光强度对浓度依赖的复杂性,很难定量测量FRET效率.本文提出了一种利用供体、受体和供体受体对的发射谱通过计算机拟合计算FRET效率的理论和方法.该方法适用于选择性地激发供体和受体与供体的浓度比已知的情况,因而适合基于绿色荧光蛋白(GFP)供体-受体对.本文利用该方法拟合计算了Cameleon分别在零钙和饱和钙时的FRET效率.  相似文献   

6.
We report single molecule spectroscopic evidence of FRET in CdSe quantum dot (QD) conjugated with Cy5-labeled molecular chaperone systems in buffer solutions. Donor QDs are core-shell type nanocrystals covered with organic surfactants on their outermost surfaces, i.e. CdSe/ZnS/TOPO’s. As prototype molecular chaperones, we adopt prefoldins (PFDs), on which Cy5’s are labeled as acceptors. Donor QDs possess two-fold degenerate emission dipoles perpendicular to the c-axis, due to their Wurtzite crystal structures, while acceptor Cy5’s possess linear absorption and emission dipoles. Thus, their combination provides novel features to those in conventional FRET systems. PFDs are jellyfish-shaped hexameric co-chaperones of group II chaperonins, which recognize hydrophobic portions of denatured proteins and encapsulate them within their central cavities. Hence, PFDs will also capture the CdSe/ZnS/TOPO QDs due to its surface similarity to the denatured proteins. By introducing simple microscope setup for single QD-PFD-Cy5 spectroscopy, we have successfully captured the emission spectra in FRET regime. We also have observed peculiar features in time evolution profiles of single QD emissions conjugated with Cy5-labeled PFDs under polarization modulation measurements. Notable point of our hybrid conjugates is that they are biochemically in living action. We describe our present results in relation to possible protein reactions.  相似文献   

7.
估算供体-受体对荧光共振能量传递效率的研究   总被引:2,自引:2,他引:0  
在有机白光LED的研究中,能量传递效率计算方法的研究是一项很有意义的工作。作者在总结前人工作的基础上,提出了一种利用有机分子发射谱和激发谱估算有机分子荧光共振能量传递(FRET)效率相对值的新方法,这种方法的优点是数据处理过程简单,对实验仪器设备要求不高,并且不需要通常计算方法所需的荧光量子产率等参数,缺点是只能计算能量传递的相对值。利用这种方法计算了甲萘酚、溴甲酚紫、萤光素钠盐三种能量受体和能量供体核黄素在不同浓度下能量传递效率的相对值,计算结果与实验结果基本符合,验证了此方法的合理性。  相似文献   

8.
Fluorescence Resonance Energy Transfer (FRET) is a powerful tool to determine distances between chromophores bound to macromolecules, since the efficiency of the energy transfer from an initially excited donor to an acceptor strongly depends on the distance between the two dye molecules. The structure of the noncovalent complex of double-strand DNA (dsDNA) with thiazol orange dimers (TOTO) allows FRET analysis of two intercalated chromophores. By intercalation of two different TOTO dyes we observe an energy transfer from TOTO-1 as donor and TOTO-3 as acceptor. In this manner we are able to determine the mean distance between two proximate TOTO molecules bound to dsDNA. Thus the maximum number of binding positions for this type of intercalation dyes in the dsDNA can be obtained. Furthermore the dependency of the acceptor emission on the donor concentration is analysed. The emission of TOTO-3 reaches a maximum when the acceptor-to-donor ratio is 1:10.  相似文献   

9.
Time-resolved fluorescence lifetime microscopy (TRFLM) allows the combination of the sensitivity of fluorescence lifetime to environmental parameters to be monitored in a spatial manner in single living cells, as well as providing more accurate, sensitive, and specific diagnosis of certain clinical diseases and chemical analyses. Here we discuss two applications of TRFLM: (1) the use of nonratiometric probes such as Calcium Crimson, for measuring Ca2+; and (2) quantification of protein interaction in living cells using green and blue fluorescent protein (GFP and BFP, respectively) expressing constructs in combination with fluorescence resonance energy transfer microscopy (FRET). With respect to measuring Ca2+ in biological samples, we demonstrate thatintensity-based measurements of Ca2+ with single-wavelength Ca2+ probes such as Calcium Crimson may falsely report the actual Ca2+ concentration. This is due to effects of hydrophobicity of the local environment on the emission of Calcium Crimson as well as interaction of Calcium Crimson with proteins, both of which are overcome by the use of TRFLM. The recent availability of BFP (P4-3) and GFP (S65T) (which can serve as donor and acceptor, respectively) DNA sequences which can be attached to the carboxy-or amino-terminal DNA sequence of specific proteins allows the dual expression and interaction of proteins conjugated to BFP and GFP to be monitored in individual cells using FRET. Both of these applications of TRFLM are expected to enhance substantially the information available regarding both the normal and the abnormal physiology of cells and tissues.  相似文献   

10.
采用CCK-8技术检测发现传统中药消癌平(XAP)对人肺腺癌(ASTC-a-1)细胞的增殖活性具有显著的抑制作用。利用共聚焦扫描荧光显微成像、荧光共振能量转移(FRET)及其受体光漂白技术证实了基于FRET技术构建的SCAT3质粒在ASTC-a-1细胞中的稳定表达。将消癌平加入细胞培养液中培育细胞,并在不同的时间检测活细胞内SCAT3的荧光发射光谱,从而监测细胞中caspase-3的活化状态。实验结果表明:(1)消癌平可以有效抑制人肺腺癌(ASTC-a-1)细胞的增殖活性并诱导细胞的死亡,消癌平对细胞的抑制作用具有剂量依赖性。(2)消癌平处理细胞72 h后,细胞内大量的SCAT3被切割,表明细胞内caspase-3的活化水平明显升高。(3)将含消癌平的细胞培养液与细胞共同培养24 h,然后采用没有消癌平的细胞培养液培养细胞48和72 h后,细胞内SCAT3的光谱没有明显改变,表明消癌平作用细胞24 h内没有显著激活细胞内的caspase-3。  相似文献   

11.
Chen Wang  Ya Cheng 《Optik》2010,121(1):57-62
Fluorescence spectrometry based on fluorescence resonance energy transfer (FRET) principle is a simple but effective tool for investigating protein-protein interactions. In this paper, we report a spectrometry to quantify FRET efficiency based on our home-designed spectral probe system and spectral data-processing procedure. In our method, the fluorescence spectrum from each specimen is recorded at two wavelengths 454 and 502 nm. Least-squares linear fitting algorithm is applied directly to decompose the spectra of donor and acceptor under these two wavelengths to obtain FRET efficiency, which takes both spectral intensity and spectral profile into account compared with traditional three-step analysis. This system and the data-processing procedure enabled us to detect the homo-interaction and hetero-interaction of proteins in living cell.  相似文献   

12.
We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology.  相似文献   

13.
A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It’s the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I424/I581) changed significantly and responded linearly toward minor pH changes in the range of 5.4–6.6. It should be noted that it’s rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.  相似文献   

14.
The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor–acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation [1]. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.  相似文献   

15.
Sensitized-emission fluorescence resonance energy transfer(FRET) detection method based on threechannel fluorescence microscopy is widely used.Several FRET algorithms,such as NFRET,FRETn,FR, FRETR,and FC/Df,are developed recently to quantitatively gauge and compare FRET signals between different experimental groups.However,the algorithms are difficult to choose and interpret.In this letter, we optimize the suitable yellow fluorescent protein(YFP) to cyan fluorescent protein(CFP) concentration ratio range for the above FRET algorithms.We also test the effect of YFP-to-CFP concentration ratio on the calculated energy transfer efficiency E and use the optimized FRET algorithms in the analysis of fas-associated protein with death domain(FADD) self-association directly in living cells.  相似文献   

16.
The acceptor states in CdTe:Cl single crystals are investigated using a technique based on the analysis of differential spectra of selectively excited donor-acceptor pair photoluminescence. The splitting of 2P 3/28) and 2S 3/28) states of the AgCd tetrahedral acceptor taking place upon a decrease in the donor-acceptor separation is found. The energies of seven excited states of the complex acceptor with an activation energy of ~121 meV are determined.  相似文献   

17.
Excitation of donor-acceptor pair luminescence has been studied in CdTe doped with lithium or chlorine. The excitation spectrum of the lithium acceptor is determined and fitted with the effective mass theory of Baldereschi and Lipari. Revised values of the valence band parameters are deduced: μ = 0.8, δ = 0.054, Ry = 24 meV. The analysis of the 1.45 eV luminescence band in compensated Cl-doped crystals shows the existence of donor-acceptor pair transitions. Three acceptor centers are identified: EA = 89, 111 and 119 meV, and the contribution of a deep donor (ED > 40 meV) is demonstrated. Besides intracentre type excitation transitions of the 1.45 eV band have been observed in non-compensated chlorine-doped crystals. Thus several recombination channels and distinct acceptor states contribute to the composite 1.45 eV luminescence band.  相似文献   

18.
We prepared fluorescent microspheres with notably large Stokes shift and long-wavelength fluorescence by applying fluorescence resonance energy transfer (FRET) between two common julolidine dyes. Short distance between dye molecules caused by high dye concentration results in efficient FRET in microspheres. However, adequate dye concentration and moderate molar ratio of the donor and acceptor should be chosen to avoid aggregation of dye molecules, which leads to the decrease of fluorescent intensity. Microrspheres with average distance between dye molecules of 1.94 nm and molar ratio of 3.08:1 realize highly efficient FRET with no fluorescence of donor and intense long-wavelength emission of acceptor. In addition, the applied solvent evaporation method for preparing microspheres provided better protection of dyes from ambient medium than traditional surface-labeled method. These results demonstrate the feasibility of applying FRET in microspheres to expand useful fluorescent probes, and reveal their potential application in bioassays field.  相似文献   

19.
李东阳  张远宪  欧永雄  普小云 《物理学报》2019,68(5):54203-054203
将单一折射率的石英裸光纤植入由聚二甲基硅氧烷构成的基片微流道中,以低折射率的罗丹明B(RhB)和吡啶821(LDS821)乙醇溶液构成的供体和受体对作为激光增益介质.采用沿光纤轴向消逝波抽运方式,首先以波长为532nm的连续波激光器作为激励光,对荧光共振能量转移特性参数进行了研究.然后以波长为532nm的脉冲激光器作为抽运光,通过直接激励供体分子RhB,并将其能量转移给临近的受体分子LDS821,在不改变抽运光波长的条件下,实现了较低阈值(1.26μJ/mm~2)的受体LDS821激光辐射.  相似文献   

20.
The aqueous suspension of fluorescent nanoparticles were prepared by using 9-anthradehdye derivative (AH). The nanoparticles (AHNPs) were characterized using DLS-zeta sizer and SEM techniques. The photo physical properties of nanoparticles and precursor were measured and compared using UV-absorption spectroscopy, fluorescence spectroscopy and fluorescence lifetime studies. The significant overlap between fluorescence spectrum of AHNPs and excitation spectrum of Riboflavin (RF) led us to explore Fluorescence Resonance Energy Transfer (FRET) studies between AHNPs and RF in aqueous medium. The mechanism of FRET from AHNPs to RF discussed on spectral observations, thermodynamic parameters and changes produces in fluorescence lifetime in absence and presence of different concentrations of RF to AHNPs. The limit of detection for RF (0.071 µM) is considerably low compared with reported methods. Thus, we explore AHNPs as novel nano probe for quantitative determination of RF in pharmaceutical samples based on FRET study. In addition with this, AHNPs has excellent antibacterial activity than the bulk material for two different bacteria culture viz. E. coli and Bacillus sps.
Graphical Abstract 9-anthradehdye based fluorescent nanoparticles (AHNPs) explores as nano probe to detect Riboflavin (RF) in aqueous medium based on Fluorescence Resonance Energy Transfer (FRET) studies. The proposed analytical method successfully applied for quantitative determination of RF in pharmaceutical samples. In addition, with this, AHNPs has excellent antibacterial activity than the bulk material for two different bacteria culture suspension viz. E. coli and Bacillus sps.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号