首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A liquid jet of either nitrogen or argon of 20 μm diameter was exposed to intense laser fields with pulse durations between 70 fs and 250 ps, leading to intensities of 1016 W cm-2 and 1013 W cm-2, respectively. The emission of extreme UV light and soft X-rays shows the characteristic lines of hydrogen-like nitrogen and carbon-like argon. For nitrogen the emitted photon flux at 250 ps was about two orders of magnitude higher than for 70 fs pulses. A weak dependence on the laser polarization with respect to the liquid jet axis was found. The kinetic energy of the emitted ions easily exceeded 100 keV for nitrogen and 200 keV for argon for a pulse duration close to 2 ps. Received: 21 August 2000 / Revised version: 20 December 2000 / Published online: 22 March 2001  相似文献   

2.
Features of light pulse propagation and nonlinear optical transformation of the spectrum generated by titanium-sapphire laser pulses (τ0.5 = 27 fs, λ0 = 790 nm) have been studied experimentally in a 50-cm cylindrical hollow waveguide (microcapillary with 280-μm diameter core) filled with gaseous molecular nitrogen and helium. Stable guided propagation of light pulses with an intensity of ~1.5⋅1014 W/cm2 in the fundamental EH11 mode of the gas-filled capillary has been demonstrated. Exact focusing of the laser light made it possible to obtain rather high relative (≥95%) and absolute (~60%) energy transmission efficiencies for the pulses at gas pressures equal to or lower than 760 Torr. A method to determine the nonlinear phase shift of the pulses has been proposed. Values of the nonlinear refractive index n2 ≈ 4.5⋅10–23 cm2/(W⋅Torr) (N2) and n2 ≈ 2.8⋅10–23 cm2/(W⋅Torr) (He) have been found. A short-wavelength shift in addition to the Kerr nonlinearity has been shown to be contributed by the generated electron plasma at high pulse intensities (≥1014 W/cm2).  相似文献   

3.
We present results on hot electron and energetic ion (keV–MeV) generation from polished and nanostructured metallic surfaces excited by p-polarized, femtosecond laser pulses in the intensity range of 1×1015–1.5×1017 W cm-2. A clear enhancement in the hard X-ray spectrum from nanoparticle-coated surfaces is observed, indicating ‘hotter’ electron production in nanoparticle-produced plasma until the intensity of 2×1016 W cm-2 is reached. Contrary to the existing perception, we find that the hotter electrons do not lead to hotter ion emission. The total ion flux and the ion energy integrated over the 4–1400 keV energy range are found to be enhanced by 50% and 16%, respectively, for nanostructured targets in comparison to those from polished targets. 55% enhancement in yield is observed for ions at the lower end of the energy range, while hotter ions are actually found to be suppressed by ∼40%. The surface modulations present on the nanoparticle-coated targets are observed to reduce the maximum energy of the ions and showed an intensity-dependent increase in the divergence of the ion beam. PACS 79.20.Ds; 68.47.De; 61.80.Ba; 61.82.Bg; 42.65.Re  相似文献   

4.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

5.
Thep-Si/HF-electrolyte interface was characterized by capacitance–voltage (C–V) and current–voltage (I–V) studies. At low frequency, the measured capacitance exhibits two maxima: one in the weak accumulation regime (around 0.8 V [SCE]) and the other in the strong accumulation regime (around 2.6 V [SCE]), both of which disappear at high frequency. The disappearance of the two capacitance maxima is attributed to the slow response of interface traps to high frequencies. The flat-band potential, VFB, is found to be frequency dependent. The surface state densities corresponding to the two capacitance maxima are estimated to be 3.2×1011 cm-2 and 2.4×1011 cm-2, respectively. The in situ I–V characteristics distinguish pore formation, transition and electropolishing regions. Porous Si synthesized at 50 mA cm-2 gives a broad photoluminescence peak around 2.04 eV at 300 K. Received: 4 September 2000 / Accepted: 9 February 2001 / Published online: 26 April 2001  相似文献   

6.
We have measured the absorption of the 19.47-nm neon like bromine (J=2–1) X-ray laser line in low-pressure helium. The experiment was motivated by the coincidence of this line with the low-absorption wing of an autoionizing transition in helium. We observe that, with 1 mbar of helium, the continuum background and another bromine X-ray laser line at 19.82 nm are strongly reduced, enhancing the relative strength of the 19.47-nm laser line. Increasing the helium pressure to 1.5 mbar makes the continuum virtually disappear, resulting in an almost monochromatic emission of the X-ray laser line. An estimate of the absorption cross section for the 19.47-nm line is given as ≈3.9×10-19 cm2 and for the nearby continuum as 0.9–1.3×10-18 cm2. Received: 8 March 1999 / Revised version: 26 April 1999 / Published online: 11 August 1999  相似文献   

7.
Filamentation occurs within a 1.5 cm-long crystal of BaF2 during the propagation of intense, ultrashort (40 fs) pulses of 800 nm light; a systematic study as a function of incident power enables us to extract quantitative information on laser intensity within the condensed medium, the electron density and the six-photon absorption cross section. At low incident power, a single filament is formed within the crystal; two or more filaments are observed along the direction transverse to laser propagation at higher incident powers. Further, due to fluorescence from six-photon absorption (6PA), we are able to map the intensity variation in the focusing–refocusing cycles along the direction of laser propagation. At still higher incident powers, we observe splitting of multiple filaments. By measuring the radius (L min ) of single filament inside BaF2, we obtain estimates of peak intensities (I max ) and electron densities (ρ max ) to be 3.26×1013 W cm−2 and 2.81×1019 cm−3, respectively. Use of these values enables us to deduce that the 6PA cross-section in BaF2 is 0.33×10−70 cm12 W−6 s−1.  相似文献   

8.
The results of theoretical and experimental studies of sensitivity of a resonant photoacoustic Helmholtz resonator detector for gas flowing through a photoacoustic cell under reduced pressure are presented. The measurements of the sensitivity and ultimate sensitivity of the differential photoacoustic cell were performed with a near-IR room-temperature diode laser using the well-known H2O absorption line (12496.1056 cm-1) as a reference. The measured value of the sensitivity (6–17 Pa W m-1) is in satisfactory agreement with the calculated one, which equals 6–35 Pa W m-1. The obtained value of the ultimate sensitivity ((3–5)×10-7 W m-1 Hz-1/2) provides measurements of the concentration of molecules at the ppb–ppm level. Received: 19 April 2001 / Revised version: 18 September 2001 / Published online: 7 November 2001  相似文献   

9.
19 W/cm2 range with improved shot-to-shot energy stability. This system gives a resulting brightness of ∼3.3×1021 W cm-2 sr-1. Received: 5 November 1996/Revised version: 29 November 1996  相似文献   

10.
2 Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6×1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25×106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma. Received: 30 January 1998/Revised version: 12 June 1998  相似文献   

11.
We have measured the three-body decay of a Bose–Einstein condensate of rubidium (87Rb) atoms prepared in the doubly polarized ground state F=m F =2. Our data are taken for a peak atomic density in the condensate varying between 2×1014 cm-3 at initial time and 7×1013 cm-3, 16 s later. Taking into account the influence of the uncondensed atoms on the decay of the condensate, we deduce a rate constant for condensed atoms L=1.8 (±0.5) ×10-29 cm6 s-1. For these densities we did not find a significant contribution of two-body processes such as spin dipole relaxation. Received: 24 November 1998 / Revised version: 26 June 1999 / Published online: 8 September 1999  相似文献   

12.
A two-channel photo-acoustic spectrometer (PA spectrometer) with a near infrared diode laser was used for taking measurements of a high resolution ethylene absorption spectrum. A semiconductor TEC-100 laser with an outer resonator generates a continuous single-frequency radiation in the range 6030–6300 cm-1. A newly designed model of photo-acoustic detector (PAD) in the form of a ring type resonator provides for measurement of weak absorption cross-section equal to 4×10-23 cm2/mol at a laser radiation power of 3 mW. The PAD threshold sensitivity is 2×10-9 cm-1 Hz-1/2 W, when the signal to noise ratio equals to 1. The ethylene absorption spectrum within the range 6035–6210 cm-1 was measured for the first time with a spectral resolution of 10 MHz. The reported line centre positions have an uncertainty of ± 0.0005 cm-1. The precise measurements of ethylene absorption cross-sections were carried out using the mixture of high purity ethylene and broadening gas (nitrogen) at the mixture ratio 1:50–1:200. Measurements were carried out at a mixture pressure of about 4.2 kPa. PACS 42.62.Fi; 42.55.Px  相似文献   

13.
Silver clusters embedded in helium nanodroplets are exposed to intense femtosecond laser pulses (1013 - 1016 W/cm2). The signal of highly charged (q≤11) atomic fragments is maximized by delayed plasmon enhanced ionization using stretched laser pulses. Further details with respect to the dynamics of the charging process can be obtained, when the intensity distribution within the laser focus is taken into account. For the first time, the z-scan method is applied to clusters which offers a route to investigate the explicit dependence of the ion signals with respect to the laser intensity. By taking advantage of the volumetric weighting effect ionization thresholds are determined, yielding values well below 1014 W/cm2 for Agq+ ions with q≤11.  相似文献   

14.
Cavity enhanced absorption spectroscopy is performed using an external cavity diode laser operating around 1516 nm. We demonstrate a sensitivity of 6×10−8 cm−1 Hz−1/2 and utilise a simple method to measure pressure-induced broadening and shift coefficients. The broadening and shift coefficients for six gases (helium, neon, argon, xenon, oxygen and nitrogen) have been determined at room temperature for four transitions in the υ 1+υ 3 combination band of ammonia. Comparisons of the broadening coefficients with previous work in this region, where it exists, show good agreement. The broadening and shift coefficients of nitrogen and oxygen are also in good agreement with calculated values using the Robert and Bonamy theory. Both the broadening and shift coefficients show a clear trend through the rare gases, which can be explained in terms of the varying magnitude of the long range attractive forces operating between the colliding partners. We also demonstrate the application of the Parmenter–Seaver formalism to estimate the potential well depth of the ammonia dimer from the obtained broadening coefficients. The obtained well depth agrees well with theoretical calculations.  相似文献   

15.
We report our results on the nonlinear optical and optical limiting properties of two alkoxy phthalocyanines namely 2,3,9,10,16,17,23,24-octakis-(heptyloxy) phthalocyanine and 2,3,9,10,16,17,23,24-octakis-(heptyloxy) phthalocyanine zinc(II) studied at a wavelength of 532 nm using 6 ns pulses. Using the standard Z-scan technique we observed that both the phthalocyanines exhibited negative nonlinearity as revealed by the signature of closed aperture data. The magnitude of the nonlinear refractive index n2 evaluated from the closed aperture data was ∼ 1.61×10-11 cm2/W for the free-base phthalocyanine and ∼ 1.56×10-11 cm2/W for the metallic phthalocyanine. Open aperture Z-scan data indicates strong nonlinear absorption in both the phthalocyanines with measured nonlinear coefficients of ∼ 1650 cm/GW and ∼ 1850 cm/GW respectively. We also report optical limiting properties of these phthalocyanines with limiting thresholds (I1/2) of ∼ 0.5 J/cm2. Our studies suggest that these phthalocyanines are one of the best molecules for nonlinear optical applications studied recently. PACS 42.65.-k; 42.70.Jk, 42.65.Jx  相似文献   

16.
Reactive cosputtering is employed to prepare high-permittivity HfTiO gate dielectric on n-Ge substrate. Effects of Ge-surface pretreatment on the interface and gate leakage properties of the dielectric are investigated. Excellent performances of Al/HfTiO/GeO x N y /n-Ge MOS capacitor with wet–NO surface pretreatment have been achieved with a interface-state density of 2.1×1011 eV−1 cm−2, equivalent oxide charge of −7.67×1011 cm−2 and gate leakage current density of 4.97×10−5 A/cm2 at V g =1 V.  相似文献   

17.
The patterning of lanthanum-doped lead zirconate titanate (PLZT) and strontium-doped lead zirconate titanate (PSZT) thin films has been examined using a 5-ns pulsed excimer laser. Both types of film were deposited by rf magnetron sputtering with in situ heating and a controlled cooling rate in order to obtain the perovskite-structured films. The depth of laser ablation in both PSZT and PLZT films showed a logarithmic dependence on fluence. The ablation rate of PLZT films was slightly higher than that of PSZT films over the range of fluence (10–150 J/cm2) and increased linearly with number of pulses. The threshold fluence required to initiate ablation was ∼ 1.25 J/cm2 for PLZT and ∼ 1.87 J/cm2 for PSZT films. Individual squares were patterned with areas ranging from 10×10 μm2 up to 30×30 μm2 using single and multiple pulses. The morphology of the etched surfaces comprised globules which had diameters of 200–250 nm in PLZT and 1400 nm in PSZT films. The diameter of the globules has been shown to increase with fluence until reaching an approximately constant size at ≤ 20 J/cm2 in both types of film. The composition of the films following ablation has been compared using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. PACS 79.20.Ds; 82.80.Pv; 82.80.Ej  相似文献   

18.
Photothermal deflection spectroscopy was applied for selective detection of the intensely coloured iron(II) chelate with ferrozine on Silufol plates. The linearity range was 1×10-11 - 6×10-8 mol cm-2 of chelate at the plate surface, which corresponded to 1×10-9 - 4×10-6 M of chelate in solution. The limits of detection and quantification are 8×10-12 and 20×10-12 mol cm-2 at the plate from 15 μL of test solution (0.5 nM and 1.5 nM in solution, respectively), which corresponded to n ×10-18 mol absolute amounts of the chelate at the detection zone.  相似文献   

19.
Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8±0.1 J cm−2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above ≈3 J cm−2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer–Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal. Received: 1 October 1999 / Accepted: 15 October 1999 / Published online: 23 February 2000  相似文献   

20.
Transparent conducting antimony-doped tin oxide (SnO2:Sb) films were deposited on organic substrates by r.f. magnetron-sputtering. Polycrystalline films with a resistivity of ≈ 6.5×10-3 Ω cm, a carrier concentration of≈ 1.2×1020 cm-3 and a Hall mobility of ≈ 9.7 cm2 v-1 s-1 were obtained. The average transmittance of these films reached 85% in the wavelength range of the visible spectrum. Received: 20 April 2001 / Accepted: 23 July 2001 / Published online: 17 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号