首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
确定分布的展向Lorentz力调制下的槽道湍流涡结构   总被引:1,自引:0,他引:1       下载免费PDF全文
吴文堂  洪延姬  范宝春 《物理学报》2014,63(5):54702-054702
采用直接数值模拟方法,对槽道湍流中确定分布的Lorentz力的流动控制与减阻问题进行研究.讨论了Lorentz力作用于槽道湍流后,流场的特性和涡结构的特性,并对此类Lorentz力对槽道湍流的控制与减阻机理进行了讨论.研究发现:1)Lorentz力诱导的层流流场壁面附近存在梯度极大的展向速度剪切层,该剪切层容易形成流向涡结构;2)在给定合适参数的确定分布的Lorentz力作用下,湍流流场仅剩周期分布的准流向涡;3)与未控制流场相比,控制后的流场中,准流向涡的抬升高度大大降低,从而减小猝发强度,使壁面阻力下降.  相似文献   

2.
An opposition control scheme with strengthened control input is proposed and tested in turbulent channel flows at friction Reynolds number Reτ = 180 by direct numerical simulations. When the detection plane is located at less than 20 wall units, the drag reduction rate can be greatly enhanced by increasing the control amplitude parameter. The maximum drag reduction rate achieved in the present study is around 33%, which is much higher than the best value of 25% reported in literature. The strengthened control can be more efficient to attain a given drag reduction rate. Based on the total shear stress at the virtual wall established between the real wall and the detection plane by the control, a new friction velocity is proposed and the corresponding coordinate transform is made. Scaled by the proposed friction velocity, the wall-normal velocity fluctuation and the Reynolds shear stress of the controlled flows are collapsed well with those of the uncontrolled flow in the new coordinate. Based on the similarity, a relation between drag reduction rate and the effectiveness of the virtual wall is deduced, which disclosed that the elevation and residual Reynolds shear stress at the virtual wall are the key parameters to determine the drag reduction rate. The conclusion are also validated at Reτ = 395 and 590. The decrease of the drag reduction rate with the increase of the Reynolds number is attributed to the enhanced residual Reynolds shear stress at the virtual wall.  相似文献   

3.
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.  相似文献   

4.
陈耀慧  董祥瑞  陈志华  张辉  栗保明  范宝春 《物理学报》2014,63(3):34701-034701
在翼型上翼面壁面附近流场中形成的流向洛伦兹力,可提升翼型的升力减小阻力,然而制约其推广应用的主要瓶颈是极为低下的控制效率,为提高洛伦兹力的控制效率,需研究其控制机理.以翼型绕流的洛伦兹力控制为例,利用双时间步Roe格式及水槽对其进行数值及实验研究.结果表明:洛伦兹力的控制效果随着来流速度的增加而下降,升力增幅和阻力减幅与来流速度大小呈反比关系,但升力增加和阻力减小的规律不变,都是升力先急剧增加随后缓慢增加,而阻力先急剧减小然后再缓慢增加,基本原因为升力和阻力先受洛伦兹力推力的影响而分别增加和减小,随后洛伦兹力作用增加翼面壁面摩擦力,导致升力减小和阻力增加,流向洛伦兹力还导致翼型壁面压力下降,增加翼型升力和压差阻力;壁面摩擦力导致的升力降幅比壁面压力变化导致的升力增幅小,壁面压力变化起主导作用;洛伦兹力推力对阻力的降幅比压差阻力的增幅大,洛伦兹力推力起主导作用,因此阻力减小.  相似文献   

5.
尹纪富  尤云祥  李巍  胡天群 《物理学报》2014,63(4):44701-044701
在亚临界区高雷诺数Re=1.4×105下,采用脱体涡模拟结合湍流分离的方法对弱电解质中电磁力作用下湍流边界层分离圆柱绕流场及其升(阻)力特性进行了数值模拟和分析.结果表明,电磁力可以提高圆柱体湍流边界层内的流体动能,延缓圆柱体湍流边界层的流动分离,减弱圆柱体湍流绕流场中在流向和展向上大尺度漩涡的强度,减小圆柱体阻力时均值及其升力脉动幅值.当电磁力作用参数大于某个临界值后,湍流边界层流动分离消失,在圆柱体尾部产生射流现象,从而电磁力对圆柱体产生净推力作用,出现负阻力现象,而且升力脉动幅值接近于零,出现圆柱体升力消失现象.  相似文献   

6.
槽道湍流的展向振荡电磁力壁面减阻   总被引:1,自引:0,他引:1       下载免费PDF全文
梅栋杰  范宝春  黄乐萍  董刚 《物理学报》2010,59(10):6786-6792
采用直接数值模拟方法,对槽道湍流的展向振荡电磁力的减阻效果和减阻机理进行了研究,讨论了电磁力强度和振荡频率对湍流猝发事件以及壁面减阻率的影响.结果表明,电磁力强度或振荡频率变化时,湍流猝发频率和猝发强度的变化趋势是相反的,所以存在最优参数使得减阻效果最好.等价壁面展向速度可以很好地描述电磁力强度和振荡频率的变化对减阻效果的综合效应。  相似文献   

7.
槽道湍流展向振荡电磁力控制的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
梅栋杰  范宝春  陈耀慧  叶经方 《物理学报》2010,59(12):8335-8342
对槽道湍流的展向振荡电磁力控制进行了实验研究,讨论了展向振荡电磁力对宏观流场、近壁湍流结构以及壁面阻力的影响.采用谱方法进行了数值模拟的对比.数值模拟和实验结果均表明展向振荡电磁力能够使近壁区域的宏观流场产生周期性振荡,并影响壁湍流的条带结构,使其在展向上发生倾斜,从而使壁面阻力减小.  相似文献   

8.
Direct numerical simulation of a turbulent channel flow with moving dimples at the bottom wall is carried out using the pseudo-spectral method and the curvilinear coordinate system. Suboptimal control based on the spanwise wall shear stress is applied for skin-friction drag reduction, and is implemented by the finite-size sensor-actuator system. The control law is realised in physical space by using a cross-shaped truncation of the wall shear stress information, which can be measured by the sensor. Only the information of wall shear stress inside the sensor area is utilised and that outside the sensor area is obtained by a linear reconstruction from the averaged value over the sensor. To effectively intervene the near-wall coherent structures, low-pass filtering of the spanwise wall shear stress is additionally implemented to eliminate the extra disturbances induced by the presence of dimple actuators, and the filtered stress is used as the control input. Numerical tests on the present control strategy show that the pressure form drag caused by the presence of dimples is reduced significantly as compared with the original suboptimal control, and the reduction of total drag is comparable with that of the opposition control. The underlying mechanism is further analysed by looking into the interaction between the moving dimples and the near-wall coherent structures.  相似文献   

9.
A spanwise heterogeneity of streamwise drag is known to lead to the formation of large secondary motions of Prandtl's second kind. Based on the data sets extracted from direct numerical simulations (DNS) of fully developed turbulent channel flow where streamwise stripes of free-slip surface with varying spanwise extension are introduced, we investigate the topological structure of the secondary motions. We find a complex restructuring of the secondary motion with increasing extent of free-slip/no-slip region where the width of the free-slip region in viscous units appears to be one important governing parameter for the vortex formation. The most striking feature of this restructuring is a change in the rotational direction of the major vortex pair such that the related high- and low-momentum pathways are found at different locations. The present results reveal that the spanwise inhomogeneity of the Reynolds stress distribution is strongly related to the observed change of rotational direction. In addition, it is shown that the vorticity source remains largely unchanged and mainly restricted to a rather small region close to the discontinuity in the boundary condition, despite the fact that the topology of secondary motions substantially changes with variation of the spanwise length scale. This suggests a complex interplay between the vortices that are generated at the surface discontinuities and the surrounding flow.  相似文献   

10.
采用大涡模拟和浸没边界法相结合对不同高度和不同间距横向粗糙元壁面槽道湍流进行了模拟,得到了光滑壁面和粗糙壁面湍流的流向平均速度分布,雷诺剪切应力,脉动速度均方根和近壁区拟序结构。结果发现横向粗糙元降低了流向平均速度,增大了流动阻力,粗糙壁面湍流的雷诺剪切应力大于光滑壁面。粗糙元降低了流向脉动速度,增强了展向和法向脉动速度。粗糙元高度越高,对湍流流动影响越大,而粗糙元间距对湍流统计特性的影响不大。粗糙壁面仍然存在着和光滑壁面类似的条带结构。  相似文献   

11.
通过风洞实验研究了高宽比H/d=5的正方形棱柱顶部柔性薄膜颤振对柱体气动力特性的影响规律.模型宽度为40 mm,来流风速4~20 m/s,对应Reynolds数为10 960~54 800.柔性薄膜为厚度0.04 mm的高压聚乙烯膜,长度l=0.5~4 cm不等.实验发现,柔性薄膜的振动状态对三维方柱气动力特性有显著影响.低风速下,柔性薄膜不发生颤振,其对方柱气动力影响不大;随风速的增加,柔性薄膜发生颤振,方柱的时均阻力、脉动阻力和脉动侧向力最多分别减少约5%,25%和60%.柔膜发生颤振的临界风速随其长度增大而减小.只要柔膜发生颤振,其对柱体气动力的影响都是类似的,与其长度无关.流动可视化实验发现,薄膜的颤振改变了方柱绕流场,使柱体上半部分的反对称展向漩涡变为受膜拍动控制的对称结构,且越靠近自由端,此现象越明显.   相似文献   

12.
在开源的CFD工具包OpenFOAM环境下开发了基于低磁雷诺数的磁流体湍流数值模拟求解器,对2π×1×1的方管中无磁场湍流和磁流体湍流进行直接数值模拟研究,给出了截面瞬时速度、平均速度的分布,截面对称中心线上的脉动速度的均方根值、湍动能的分布。计算结果表明,外加磁场对磁流体湍流具有抑制作用和并且这种抑制作用具有各向异性。  相似文献   

13.
Direct numerical simulations of turbulent channel flows are performed with opposition control at Reτ = 180 and 1000. The drag reduction rate at the higher Reynolds number is reduced by 25% compared with that at the lower Reynolds number. In order to investigate the reason for the degradation of the control effectiveness, we examine the response of Reynolds stresses and coherent structures in both the outer and inner regions to the control and the role that large-scale motions play therein. In the outer region, the Reynolds stresses at different length scales are reduced at the same rate as the drag reduction rate, and conditionally averaged large-scale motions with spanwise scale larger than half channel width are still large-scale low-speed streaks flanked by a pair of large-scale counter-rotating streamwise vortices but with reduced velocity amplitudes. In the inner region, the effectiveness of the control in suppressing the turbulence deteriorates at the higher Reynolds number. In response to the superimposition effect of large-scale motions, the contribution to near-wall wall-parallel velocity fluctuations from large-scale motions becomes larger at the higher Reynolds number, while the suppression of large-scale motions by the control is weaker than that of near-wall coherent structures. In both controlled and uncontrolled cases, large-scale motions can modulate the amplitudes of near-wall coherent structures, and the attenuation of streamwise vortices by the control under large-scale high-speed streaks is significantly less effective than that under large-scale low-speed streaks. As a result, the effectiveness of control in suppressing near-wall coherent structures and Reynolds shear stresses becomes weaker at the higher Reynolds number. The quantitative analysis of the contributions to the drag reduction rate from outer and inner regions shows that the effectiveness of the control is mainly determined by the suppression degree of near-wall motions. Furthermore, budgets of streamwise enstrophy are analysed to reveal the interaction of large-scale motions with near-wall streamwise vorticity. The titling effect induced by large-scale motions is positive under large-scale high-speed streaks, but negative under large-scale low-speed streaks, which could be a possible way of large-scale motion to modulate streamwise vorticity. In the controlled cases, the positive titling effect induced by large-scale motions under large-scale high-speed streaks is even enhanced, while other terms in the budgets are reduced, which could explain the degradation of control effectiveness in suppressing near-wall streamwise vortices under large-scale high-speed streaks. Therefore, the loss in the drag reduction rate at the higher Reynolds number is due to the weakened control effectiveness on near-wall coherent structures, which are exposed to the modulation effect of large-scale motions.  相似文献   

14.
在开源的CFD 工具包OpenFOAM 环境下开发了基于低磁雷诺数的磁流体湍流数值模拟求解器,对 2π ×1×1的方管中无磁场湍流和磁流体湍流进行直接数值模拟研究,给出了截面瞬时速度、平均速度的分布,截面对称中心线上的脉动速度的均方根值、湍动能的分布。计算结果表明,外加磁场对磁流体湍流具有抑制作用和并且这种抑制作用具有各向异性。  相似文献   

15.
表面张力对疏水微结构表面减阻的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
宋保维  任峰  胡海豹  郭云鹤 《物理学报》2014,63(5):54708-054708
通过构造具有棋盘状微结构的疏水表面,考虑表面张力的影响,利用定常与非定常结合的数值模拟方法,研究了疏水表面在湍流状态下的减阻特性以及微结构内气体封存的效果,其中Re=3000—30000.在低雷诺数下,疏水表面微结构内气体封存状态良好,减阻率最高约为30%;随着雷诺数的增大,压差阻力增大,减阻率有下降趋势.当来流速度过大时,水会大量进入微结构,疏水表面的减阻率变化剧烈,且已经不再减阻.结果表明,表面张力削弱了壁面切应力的影响,使得低雷诺数下微结构内气体能够有效封存,进而减小壁面阻力.  相似文献   

16.
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.  相似文献   

17.
水平管气液两相泡状流紊流结构的准三维测量   总被引:2,自引:0,他引:2  
用两个X型热膜探针对内径为35mm的水平管内气液两相泡状流的三维紊流结构进行了准三维测量,得出了沿不同直径的轴向、径向和周向的紊流脉动速度和雷诺应力分布。发现在水平管下部脉动速度和雷诺应力与单相流动时的分布规律相似;在管子上部由于空气泡的存在增强了脉动速度;在某些区域内,周向的脉动值甚至比径向和轴向的相应值还要高。水平气液两相泡状流中雷诺应力-uw不为零,在管子的上部甚至和-uv有相同的量级。给出了由于气泡引起的紊流脉动与总素流脉动比值沿径向的分布。  相似文献   

18.
The initial responses and evolutions of the flow pattern and lift coefficient of a hydrofoil under the action of electro-magnetic (Lorentz) force have been studied experimentally and numerically, and trace particle methods are employed for them. With the introduction of BVF (boundary vortex flux), the quantitative relation among Lorentz forces, BVF and lifts is deduced. The influences of flow patterns on the hydrofoil lift coefficient have been discussed based on the BVF distribution, and the flow control mechanism of Lorentz force for a hydrofoil has been elucidated. Our results show that the flow pattern and lift of the hydrofoil vary periodically without any force. However, with the action of streamwise Lorentz forces, the separation point on the hydrofoil surface moves backward with a certain velocity, which makes the flow field steady finally. The streamwise Lorentz force raises the foil lift due to the increase of BVF intensity. On the other hand, Lorentz force also increases the hydrofoil surface pressure, which makes the lift decrease. However, the factor leading to the lift enhancement is determinant, therefore, the Lorentz force on the suction side can increase the lift, and the stronger the Lorentz force, the larger the lift enhancement. Our results also show that the localized Lorentz force can also both suppress the flow separation and increase the hydrofoil lift coefficient, furthermore, the Lorentz force located on the tail acts better than that located on the front.  相似文献   

19.
In the flow around a circular cylinder, a sudden decrease in the mean drag coefficient occurs at a high Reynolds number, but the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the cylinder surface. In this paper, in order to make clear the flow characteristics around a cylinder with 20, 26 and 32 triangular grooves, the mean drag coefficient, pressure distribution, velocity distribution and turbulence intensity distribution were measured. Moreover, the flow around the cylinder was analyzed by applying the RNGk − ɛ turbulent model, and the surface flow pattern was investigated using the oil-film technique. From these results, it was found that a sudden decrease in the mean drag coefficient of a cylinder with 32 triangular grooves occurs at a lower Reynolds number compared with 20 and 26 triangular grooves.  相似文献   

20.
In the flow around a circular cylinder, a sudden decrease in the drag force occurs at a high Reynolds number, but the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the circular cylinder surface. In this paper, in order to make clear the flow characteristics around a circular cylinder in the case of changing the shapes of grooves, the drag coefficient, pressure distribution, velocity distribution and turbulent distribution were measured. Moreover the flow around the cylinder was analyzed by applying the RNGk · ∈ turbulent model, and the surface flow pattern was investigated using the oil-film technique. From these results, it is clear that the drag coefficient of a circular cylinder with triangular grooves decreases by about 15% compared with that of a circular cylinder with arc grooves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号