首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
The electronic properties of an experimentally realized graphitic carbon nitride (g-C3N3) layer has been studied via first-principles calculations. Unlike the recently reported ferromagnetic g-C4N3 structure, the g-C3N3 system is nonmagnetic. Based on the two-dimensional g-C3N3 structure, we predicts a new graphitic hydrogenated carbon nitride (g-H3C3N3) for the first time, which shows 100% half-metallic property around Fermi energy. It would be a kind of important material in spintronics if it could be synthesized experimentally in the future.  相似文献   

2.
用密度泛函理论(DFT)的B3lyp方法在6-311++g(d,p)水平上对Al2O3Hx(x=1—3)分子的几何构型, 电子结构, 振动频率等性质进行了系统研究. 并给出了它们可能基态结构的总能量(ET), 零点能(Ez), 摩尔热容(Cv), 标准熵(S), 原子化能(ΔEm), 垂直电离能(IP)及垂直电子亲和能(EA). Al2O3H和Al2O3H2分子可能的基态的几何构型都为平面结构. Al2O3H3的两个可能为基态的几何构型都是在立体Al2O3(D3h)的几何结构基础上加三个氢原子构成. 这三个分子的能量最低结构为Al2O3H(2A′)Cs, Al2O3H2(1A′) Cs, Al2O3H3 (2A) C1.  相似文献   

3.
Adsorption of hydrogen gas was tested in microporous doped carbons: activated carbon (1600 m2/g) and single wall carbon nanotubes (SWNTs). The isotherms of adsorption of LiC18 and KC24 doped microporous activated carbons were determined in the range [0–30 bar] at room temperature and 77 K. The chemisorption ratio observed at room temperature increases with increasing the alkali/carbon rate. The isotherm profiles of doped activated carbon at 77 K show no clear enhancement of the sorption ratio compared to the raw activated carbon.The adsorption sites of potassium doped SWNTs with closed end were determined by neutron diffraction experiment using deuterium gas. The K-doped SWNTs were found only slightly intercalated by K ions so that empty cavities are preserved in between the tubes. At room temperature, the chemisorption of deuterium was not observed in doped SWNTs bundles, but only in the KC8 graphite intercalation compound impurities. At low temperature, the isotherms analysis and neutron diffraction experiments have shown that D2 molecules are physisorbed in the free interstitial voids in between the tubes within the bundles.  相似文献   

4.
We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from −10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at −2% strain, and the magnetic moment jumps into 1.623 μB at −4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at −7% strain. The Co-doped WSe2 can endure strain from −6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.  相似文献   

5.
ABSTRACT

First-principles total energy calculations have been performed using the full potential linearised augmented plane wave (FP-LAPW) method as implemented in the WIEN2k code based on the density functional theory (DFT) to investigate the Al-doping effects on the structural, electronic and optical properties of AlxIn1-xP ternary alloys in the zinc-blende (ZB) phase. Different approximations of exchange-correlations energy were used such as the local density approximation (LDA), the generalised gradient approximation within parameterisation of Perdew–Burke–Ernzerhof (PBE-GGA), and the Wu-Cohen (WC-GGA). In addition, we have calculated the band structures with high accuracy using the Tran-Blaha modified Becke–Johnson (TB-mBJ) approach. The pressure dependence of the electronic and optical properties of binary AlP, InP compounds and their related ternary alloys AlxIn1-xP were also investigated under hydrostatic pressure for (P?=?0.0, 5.0,10.0, 15.0, 20.0, 25.0?GPa), where it is found that InP compound change from direct to indirect band gap for P?≥?9.16?GPa. Furthermore, we have calculated the thermodynamic properties of InP and AlP binary compounds as well as the AlxIn1-xP solid solutions, where the quasi-harmonic Debye model has been employed to predict the pressure and temperature dependent Gibbs free energy, heat capacity, Debye temperature and entropy.  相似文献   

6.
室温下在单晶Si中注入(0.6—1.5)%的C原子,利用高温退火固相外延了Si1-xCx合金,研究了不同注入剂量下Si1-xCx合金的形成及其特征.如果注入C原子的浓度小于0.6%,在850—950℃退火过程中,C原子容易与注入产生的损伤缺陷结合,难于形成Si1-xCx合金相.随注入C原子含量的增加,C原子几乎全部进入晶格位置形成Si1-xCx 关键词: 1-xCx合金')" href="#">Si1-xCx合金 离子注入 固相外延  相似文献   

7.
We report a combined experimental and computational investigation of small AlnOm species (n ≤20, m ≤ 12), produced in a laser vaporization cluster source. The oxygen content in the clusters was tuned by varying the oxygen concentration in the carrier gas. Ionization energies are bracketed using different ionizing photon energies in the energy range between 5.37 and 7.89 eV. Among the singly doped AlnO species, Al3O and Al15O are found to have relatively low ionization energies, which can be related to the magic character of the corresponding cations. Peculiarly low ionization energies also are observed for specific oxygen rich species (m > 1), suggesting the formation of ionically bound subunits. The structures and ionization energies of singly doped AlnO0,+ (n = 1 - 7) clusters were determined using density functional theory (B3LYP/6-311+G(d)). Electronic supplementary material Supplementary Online Material  相似文献   

8.
Using the full-potential linearized augmented plane wave method with generalized gradient approximation, the magnetic properties and the electronic structure of the boron-doped ZnSe (zinc blende phase) are investigated. Spin polarization calculations show the magnetic moment of the 64-atoms supercell containing one BSe (BZn) is 3.00 (0.015) μB. The density of states indicates the magnetic moments of the BSe doped configuration mainly come from the doped boron atoms and a few from its neighboring zinc atoms. The ferromagnetic and antiferromagnetic calculations for several doped configurations suggest BSe could induce stable ferromagnetic ground state in ZnSe hosts and ferromagnetic couplings exist between the doped boron atoms. Electronic structures show that BSe is p-type ferromagnetic semiconductor and hole-mediated double exchange is responsible for the ferromagnetism, while the BZn doped configuration is n-type semiconductor. Relative shallow acceptor and donor levels indicate boron-doped ZnSe is ionized easily at working temperatures.  相似文献   

9.
N doped TiO is nonmagnetic, in which spin-split impurity states are not induced near the Fermi energy (EF) by N dopant. N doped TiO2 along with transition-metal (TM) doped TiO is magnetic, in which spin-split impurity states are induced across EF. The magnetic moment is determined by the 3d4s electron configurations and the valence states of TM-dopant ions when they substitute Ti. Hence, the origin of ferromagnetism of N doped TiO2 and TiO is not closely related to the width of the band gaps of host oxides, but would be crucially related to that if the dopant can induce spin-split impurity states near EF.  相似文献   

10.
Amorphous Si:C:O:H films were fabricated at low temperature by C2F6 and O2/C2F6 plasma treating silicone oil liquid. The a-Si:C:O:H films fabricated by C2F6 plasma treatment exhibited white photoluminescence at room temperature, while that by O2/C2F6 plasma treatment exhibited blue photoluminescence. Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the sp3 and sp2 hybridized carbons, SiC bond, SiO bond and carbon-related defects in a-Si:C:O:H films correlated with photoluminescence. It is suggested that the blue emission at 469 nm was related to the sp3 and sp2 hybridized carbons, SiC bond, carbon dangling bonds as well as SiO short chains and small clusters, while the light emitting at 554 nm was related to the carbon-related defects.  相似文献   

11.
Helium nanodroplets, formed in a supersonic expansion, are doped with C60 in a pickup cell. In some experiments, they are co-doped with water. Electrons are attached to the doped droplets; the yield of anions is recorded as a function of electron energy. The C60 - yield extends to much higher energies than in experiments involving isolated, hot fullerenes; we attribute the difference to the low temperature of the neutral precursors and the efficient cooling of the nascent anions by the helium droplet, which quench thermally activated autodetachment. The yields of (C60)2 - and C60D2O- anions reveal another important factor, namely depletion of the anion signal by dissociation which is energetically more facile than autodetachment.  相似文献   

12.
Szymański  K.  SatuŁa  D.  Dobrzyński  L. 《Hyperfine Interactions》2004,159(1-4):21-27
Nuclear resonance studies of the two different types impurity doped potassium hexachloro-stannates, the isomorphic system such as (K–Rb)2SnCl6 and K2(Sn–Re)Cl6 and the nonisomorphic system K2SnCl6:Al3+ in the high temperature cubic phase revealed contrasting features with one the other characterized by static in the former and dynamic feature in the latter case respectively. The resonance spectra of the nonisomorphic system indicate additionally a sign of the local structural transition above the conventional structural phase transition temperature. This seems to be triggered by the ligand-deficient octahedral defects and can be explained in terms of the enhanced activity of the octahedral defects for the hindered rotation.  相似文献   

13.
The interaction of an Ar ion with a C60@C240@C540 carbon onion and an Ar ion beam with a C60@C240@C540@C960 carbon onion are studied by molecular dynamics. The energy threshold for the formation of a vacancy in a pentagon of the onion fullerene shell is examined in two temperature regimes (300 and 1000 K). The main types of defects formed in the onion structure at various incident ion energies are detected and described. It is shown that the pentagonal cycles with their nearest environment are the least stable regions in the carbon onion under irradiation. The results obtained provide direct confirmation of the possibility of formation of a diamond structure upon ion irradiation of carbon onions.  相似文献   

14.
The energy levels of neutral anion (VA) and cation (VC) vacancies and antisite defects are calculated for the anion CA and cation AC sublattices of III–V semiconductors. An averaged energy level position for these defects is estimated to be Eav abs = 4.9 eV. The position coincides with the local charge electroneutrality level. It is shown that the case, where the total energies of formation of VA, VC and antisite CA, AC defects in the sublattices of binary semiconductors are similar, corresponds to the point-defect equilibrium condition and stabilization of the Fermi level in the proximity of the local charge electroneutrality level. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 17–22, May, 2007.  相似文献   

15.
We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.  相似文献   

16.
Highly Al3+ ion doped nanocrystalline SrFe12−xAlxO19 (0≤x≤12), were prepared by the auto-combustion method and heat treated in air at 1100 °C for 12 h. The phase identification of the powders performed using x-ray diffraction show presence of high-purity hexaferrite phase and absence of any secondary phases. With Al3+ doping, the lattice parameters decrease due to smaller Al3+ ion replacing Fe3+ ions. Morphological analysis performed using transmission electron microscope show growth of needle shaped ferrites with high aspect ratio at Al3+ ion content exceeding x≥2. Al3+ substitution modifies saturation magnetization (MS) and coercivity (HC). The room temperature MS values continuously reduced while HC value increased to a maximum value of 18,100 Oe at x=4, which is an unprecedented increase (∼321%) in the coercivity as compared to pure Sr-Ferrite. However, at higher Al3+ content x>4, a decline in magnetization and coercivity has been observed. The magnetic results indicate that the best results for applications of this ferrite will be obtained with an iron deficiency in the stoichiometric formulation.  相似文献   

17.
A subtle first order phase transition in LiKSO4 has been discovered with the help of a temperature dependent study of the Raman intensity measurements of certain polar modes in different polarization configurations. The room temperature hexagonal C66 (P63) phase transforms to trigonal C43v (P31c) phase at 201°K while cooling; the reverse transformation (on heating) takes place at 242°K. The phase transition appears to be primarily associated with a cooperative reorientation of SO4 tetrahedra in the crystal.  相似文献   

18.
Single crystals of iminodiacetic acid (HN(CH2COOH)2) doped triglycine sulphate (IDATGS) crystals have been grown from aqueous solution containing 1-10 mol% of iminodiacetic acid at constant temperature by slow evaporation technique. The effects of different amounts of doping entities on the growth habit have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. The grown crystals were subjected to Fourier transform infrared (FTIR) spectroscopy studies to find the presence of various functional groups qualitatively. The dielectric permittivity has been studied as a function of temperature. An increase in the transition temperature (49.2-49.7 °C) of IDATGS crystals is observed. The dielectric constant (εmax) of IDATGS crystals vary in the range 922-2410 compared to pure TGS (Tc=49.12 °C and εmax=3050). Curie Weiss constants Cp and Cf in the paraelectric and ferroelectric phases were determined. The transition temperature (Tc) is found to decrease with increase in dopant concentration. P-E hysteresis studies show the presence of internal bias field in the crystal. Piezoelectric measurements were also carried out at room temperature. Domain patterns on b-cut plates were observed using scanning electron microscope. The micro hardness studies reveal that the doped crystals are harder than the pure TGS crystals. The low dielectric constant, higher transition temperature, internal bias field and hardness suggest that IDATGS crystals could be a potential material for IR detectors.  相似文献   

19.
The equilibrium composition and the effective adiabatic exponent of a low-temperature carbon plasma containing eight components (C, C2, C3, C4, C5, C+, C2+, and e) are calculated. The temperature and pressure ranges are found in which polyatomic clusters form in a gas flow. It is shown that the effective adiabatic exponent of the carbon plasma is a nonmonotonic function of temperature. In the parameter range where the plasma consists largely of polyatomic clusters, the adiabatic exponent is close to unity. It is noted that anomalously low values of the effective adiabatic exponent indicate a considerable concentration of polyatomic molecules in the plasma jet. Such values can be observed in experiments with a low-temperature carbon plasma flowing about bodies.  相似文献   

20.
It is demonstrated that many properties of interest for polyacetylene chains can be predicted on the basis of Hartree-Fock calculations on short model molecules. The equilibrium geometries, energies per C2H2 unit, and isomerization energies converge by a chain length of six or eight carbons. The ionization potential, band gaps, and band widths converge more slowly, but their limiting values can be obtained readily by extrapolating results of calculations on chains up to a length of eight carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号