首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Many intracellular transports are performed by multiple molecular motors in a cooperative manner.Here,we use stochastic simulations to study the cooperative transport by multiple kinesin motors,focusing mainly on effects of the form of unbinding rate versus force and the rebinding rate of single motors on the cooperative transport.We consider two forms of the unbinding rate.One is the symmetric form with respect to the force direction,which is obtained according to Kramers theory.The other is the asymmetric form,which is obtained from the prior studies for the single kinesin motor.With the asymmetric form the simulated results of both velocity and run length of the cooperative transport by two identical motors and those by a kinesin-1 motor and a kinesin-2 motor are in quantitative agreement with the available experimental data,whereas with the symmetric form the simulated results are inconsistent with the experimental data.For the cooperative transport by a faster motor and a much slower motor,the asymmetric form can give both larger velocity and longer run length than the symmetric form,giving an explanation for why kinesin adopts the asymmetric form of the unbinding rate rather than the symmetric form.For the cooperative transport by two identical motors,while the velocity is nearly independent of the rebinding rate,the run length increases linearly with the rebinding rate.For the cooperative transport by two different motors,the increase of the rebinding rate of one motor also enhances the run length of the cooperative transport.The dynamics of transport by N(N=3,4,5,6,7 and 8)motors is also studied.  相似文献   

2.
Processive motor proteins such as kinesin and myosin-V are enzymes that use the energy of ATP hydrolysis to travel along polar cytoskeletal filaments. One of the functions of these proteins is the transport of vesicles and protein complexes that are linked to the light chains of the motors. Modeling the light chain by a linear elastic spring, and using the two-state model for one- and two-headed molecular motors, we study the influence of thermal fluctuations of the cargo on the motion of the motor-cargo complex. We solve numerically the Fokker-Planck equations of motor motion, and find that the mean velocity of the motor-cargo complex decreases monotonously as the spring becomes softer. This effect is due to the random force of thermal fluctuations of the cargo disrupting the operation of the motor. Increasing the size (thus, the friction coefficient) of the cargo also decreases the velocity. Surprisingly, we find that for a given size of the cargo, the velocity has a maximum for a certain friction of the motor. We explain this effect by the interplay between the characteristic length of thermal fluctuations of the cargo on a spring, the motor diffusion length, and the filament period. Our results may be relevant for the interpretation of single-molecule experiments with molecular motors (bead assays), where the motor motion is observed by tracking of a bead attached to the motor.  相似文献   

3.
4.
The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.  相似文献   

5.
Recent experiments using single-molecule techniques have characterized the mechanical properties of single kinesin molecules in vitro at a range of loads and ATP concentrations. These experiments have shown that kinesin moves processively along microtubules by alternately advancing each of its motor domains in a hand-over-hand fashion, using Brownian motion and the energy from ATP hydrolysis. We have extended the theoretical analysis of kinesin through a mechanistic model that is capable of describing transient and steady-state behavior. Transient dynamics are needed to describe the effect of external perturbations (e.g. interactions with other kinesin molecules). Quantitative metrics are tailored to characterize the synchronization of nonlinear, nonsmooth systems such as kinesin. These metrics are employed to analyze the simulation results and to quantify the effect of the cargo linker stiffness, the load, and the difference in intrinsic velocity on the synchronization of two coupled motor proteins. Herein, the mechanistic model and the new analysis techniques are demonstrated for the case of two coupled kinesin motors.  相似文献   

6.
Intracellular transport is mediated by molecular motors that pull cargos along cytoskeletal filaments. Many cargos move bidirectionally and are transported by two teams of motors which move into opposite directions along the filament. We have recently introduced a stochastic tug-of-war model for this situation. This model describes the motion of the cargo as a Markov process on a two-dimensional state space defined by the numbers of active plus and active minus motors. In spite of its simplicity, this tug-of-war model leads to a complex dependence of the cargo motility on the motor parameters. We present new numerical results for the dependence on the number of involved motors. In addition, we derive a simple and intuitive sharp maxima approximation, from which one obtains the cargo motility state from only four simple inequalities. This approach provides a fast and reliable method to determine the cargo motility.  相似文献   

7.
The biomolecular motor kinesin uses chemical energy released from a fuel reaction to generate directional movement and produce mechanical work. The underlying physical mechanism is not fully understood yet. To analyze the energetics of the motor, we reconceptualize its chemomechanical cycle in terms of separate fuel reaction and work production processes and introduce a thermodynamic constraint to optimize the cycle. The model predicts that the load dependences of the motor’s velocity, stepping ratio, and dwell time are determined by the mechanical parameters of the motor–track system rather than the fuel reaction rate. This behavior is verified using reported experimental data from wild-type and elongated kinesins. The fuel reaction and work production processes indicate that kinesin is driven by switching between two chemical states, probably following a general pattern for molecular motors. The comparison with experimental data indicates that the fuel reaction processes are close to adiabatic, which is important for efficient operation of the motor. The model also suggests that a soft, short neck linker is important for the motor to maintain its load transport velocity.  相似文献   

8.
The goal of this paper is to investigate the effect that a distribution of kinesin motor velocities could have on cytoskeletal element (CE) concentration waves in slow axonal transport. Previous models of slow axonal transport based on the stop-and-go hypothesis (P. Jung, A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve, Physical Biology 6 (2009) 046002) assumed that in the anterograde running state all CEs move with one and the same velocity as they are propelled by kinesin motors. This paper extends the aforementioned theoretical approach by allowing for a distribution of kinesin motor velocities; the distribution is described by a probability density function (PDF). For a two kinetic state model (that accounts for the pausing and running populations of CEs) an analytical solution describing the propagation of the CE concentration wave is derived. Published experimental data are used to obtain an analytical expression for the PDF characterizing the kinesin velocity distribution; this analytical expression is then utilized as an input for computations. It is demonstrated that accounting for the kinesin velocity distribution increases the rate of spreading of the CE concentration waves, which is a significant improvement in the two kinetic state model.  相似文献   

9.
Biomolecular motors are tiny engines that transport materials at the microscopic level within biological cells. In recent years, Elston and Peskin et al have investigated the effect of the elastic properties of the tether that connects the motor to its cargo at the speed of the motor. In this paper we extend their work and present a tether in the form of symmetric linear potential.Our results show that when the driving mechanism is an imperfect Brownian ratchet, the average speed decreases as the stiffness of the tether increases in the limit of large motor diffusion coefficient, which is similar to the results of Elston and Peskin.However, a threshold for the stiffness of the tether connecting the motor to its cargo is found in our model. Only when the tether is stiffer than the threshold can the motor and its cargo function co-operatively, otherwise, the motor and its cargo depart from each other. This result is more realistic than that of the spring model of Elston and Peskin.  相似文献   

10.
Carla Goldman  Elisa T. Sena 《Physica A》2009,388(17):3455-3464
We consider the dynamics of cargo driven by a collection of interacting molecular motors in the context of an asymmetric simple exclusion process (ASEP). The model is formulated to account for (i) excluded-volume interactions, (ii) the observed asymmetry of the stochastic movement of individual motors and (iii) interactions between motors and cargo. Items (i) and (ii) form the basis of ASEP models and have already been considered to study the behavior of motor density profile [A. Parmeggiani, T. Franosch, E. Frey, Phase Coexistence in driven one-dimensional transport, Phys. Rev. Lett. 90 (2003) 086601-1-086601-4]. Item (iii) is new. It is introduced here as an attempt to describe explicitly the dependence of cargo movement on the dynamics of motors in this context. The steady-state solutions of the model indicate that the system undergoes a phase transition of condensation type as the motor density varies. We study the consequences of this transition to the behavior of the average cargo velocity.  相似文献   

11.
李防震  蒋立春 《中国物理 B》2010,19(2):20503-020503
Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor--cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity.  相似文献   

12.
The transport by molecular motors along cytoskeletal filaments is studied theoretically in the presence of static defects. The movements of single motors are described as biased random walks along the filament as well as binding to and unbinding from the filament. Three basic types of defects are distinguished, which differ from normal filament sites only in one of the motors’ transition probabilities. Both stepping defects with a reduced probability for forward steps and unbinding defects with an increased probability for motor unbinding strongly reduce the velocities and the run lengths of the motors with increasing defect density. For transport by single motors, binding defects with a reduced probability for motor binding have a relatively small effect on the transport properties. For cargo transport by motors teams, binding defects also change the effective unbinding rate of the cargo particles and are expected to have a stronger effect.  相似文献   

13.
The directed movement of molecular motors is studied theoretically within a general class of nonuniform ratchet models in which the motor can attain M internal states and undergo transitions between these states at K spatial locations. The functional relationship between the motor velocity and the concentration of the fuel molecule is analyzed for arbitrary values of M and K. This relationship is found to exhibit universal features which depend on the number of unbalanced transitions per motor cycle arising from the enzymatic motor activity. This agrees with experimental results on dimeric kinesin and is predicted to apply to other cytoskeletal motors.  相似文献   

14.
In this study, we investigate the cooperative transport behaviors of coupled motor–cargoes system, in which multiple passive cargoes stochastically interact with one active Brownian motor. The environment with stochastic interactions is characterized by the concentration (reflecting the cargo’s number in unit volume) and switching rate (reflecting the interacting stability between motor and cargoes), based on which the stationary multiple-state process can be employed to describe the fluctuating-cargo state in the coupled system. By analyzing the average probability current of decoupled system in the thermodynamic limit, we effectively study the possibility of cooperative transport through stochastic cargoes to behave rich dynamical behaviors, including the directed current, current reversal, stochastic resonance (SR) and stochastic inhibition (SI), inverse SR and SI, even without the effect of external driving force. Based on numerical results, we systematically discuss the transport dependence on various parameters, including the cargo concentration in the crowded environment, cargo capacity of the motor, driving amplitude of external periodic force, and medium temperature. Obviously, the sensitivity of transport process to parameter changes can be used by the environment to regulate its cargo traffic, which also provides latent support for manipulating the transport performance and optimizing the coupled structure in artificial nano-machines.  相似文献   

15.
Membrane tubes are important functional elements for living cells. Experiments have found that membrane tubes can be extracted from giant lipid vesicles by groups of kinesin. How these motors cooperate in extracting the membrane tube is a very important issue but still unclear so far. In this paper, we propose a cooperation mechanism called two-track-dumbbell model, in which kinesin is regarded as a dumbbell with an end (tail domain) tethered on the fluid-like membrane and the other end (head domain) stepping on the microtubule. Taking account of the elasticity of kinesin molecule and the excluded volume effect of both the head domain and the tail domain of kinesin, which are not considered in previous models, we simulate the growth process of the membrane tube pulled by kinesin motors. Our results indicate that in the case of strong or moderate exclusion of motor tails, the average number of motors pulling the tube can be as high as 9 and thus motors moving along a single microtubule protofilament can generate enough force to extract membrane tubes from vesicles. This result is different from previous studies and may be tested by future experiments.  相似文献   

16.
Membrane tubes are important functional elements for riving cells. Experiments have found that membrane tubes can be extracted from giant lipid vesicles by groups of kinesin. How these motors cooperate in extracting the membrane tube is a very important issue but still unclear so far. In this paper, we propose a cooperation mechanism called two-track-dumbbell model, in which kinesin is regarded as a dumbbell with an end (tail domain) tethered on the fluid-like membrane and the other end (head domain) stepping on the microtubule. Taking account of the elasticity of kinesin molecule and the excluded volume effect of both the head domain and the tail domain of kinesin, which are not considered in previous models, we simulate the growth process of the membrane tube pulled by kinesin motors. Our results indicate that in the case of strong or moderate exclusion of motor tails, the average number of motors pulling the tube can be as high as 9 and thus motors moving along a single microtubule protofilament can generate enough force to extract membrane tubes from vesicles. This result is different from previous studies and may be tested by future experiments.  相似文献   

17.
18.
Kinesins are molecular motors which transport various cargoes in the cytoplasm of cells and are involved in cell division. Previous models for kinesins have only targeted their in vitro motion. Thus, their applicability is limited to kinesin moving in a fluid with low viscosity. However, highly viscoelastic fluids have considerable effects on the movement of kinesin. For example, the high viscosity modifies the relation between the load and the speed of kinesin. While the velocity of kinesin has a nonlinear dependence with respect to the load in environments with low viscosity, highly viscous forces change that behavior. Also, the elastic nature of the fluid changes the velocity of kinesin. The new mechanistic model described in this paper considers the viscoelasticity of the fluid using subdiffusion. The approach is based on a generalized Langevin equation and fractional Brownian motion. Results show that a single kinesin has a maximum velocity when the ratio between the viscosity and elasticity is about 0.5. Additionally, the new model is able to capture the transient dynamics, which allows the prediction of the motion of kinesin under time varying loads.  相似文献   

19.
20.
On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号