首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.  相似文献   

2.
Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data, while quantum machine learning algorithms could deal with big data with ease and provide exponential acceleration over classical counterparts. Meanwhile, variational quantum algorithms are widely proposed to solve relevant computational problems on noisy, intermediate-scale quantum devices. In this paper, we apply variational quantum algorithms to quantum support vector machines and demonstrate a proof-of-principle numerical experiment of this algorithm. In addition, in the classification stage, fewer qubits, shorter circuit depth, and simpler measurement requirements show its superiority over the former algorithms.  相似文献   

3.
Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.  相似文献   

4.
We propose an experimentally feasible scheme for implementing quantum restoring machine of the optimal universal 1 → 2 quanturn cloning machine in the context of cavity QED.In our scheme,two atoms (the clones) simultaneously interact with a cavity field,and meanwhile they are driven by a classical field.Then an arbitrary unknown input state can be restored in the ancilla by applying appropriate unitary local operation.  相似文献   

5.
In quantum computation, what contributes supremacy of quantum computation? One of the candidates is known to be a quantum coherence because it is a resource used in the various quantum algorithms. We reveal that quantum coherence contributes to the training of variational quantum perceptron proposed by Y. Du et al., arXiv:1809.06056 (2018). In detail, we show that in the first part of the training of the variational quantum perceptron, the quantum coherence of the total system is concentrated in the index register and in the second part, the Grover algorithm consumes the quantum coherence in the index register. This implies that the quantum coherence distribution and the quantum coherence depletion are required in the training of variational quantum perceptron. In addition, we investigate the behavior of entanglement during the training of variational quantum perceptron. We show that the bipartite concurrence between feature and index register decreases since Grover operation is only performed on the index register. Also, we reveal that the concurrence between the two qubits of index register increases as the variational quantum perceptron is trained.  相似文献   

6.
《Physics letters. A》2020,384(25):126590
Quantum algorithms can enhance machine learning in different aspects. Here, we study quantum-enhanced least-square support vector machine (LS-SVM). Firstly, a novel quantum algorithm that uses continuous variable to assist matrix inversion is introduced to simplify the algorithm for quantum LS-SVM, while retaining exponential speed-up. Secondly, we propose a hybrid quantum-classical version for sparse solutions of LS-SVM. By encoding a large dataset into a quantum state, a much smaller transformed dataset can be extracted using quantum matrix toolbox, which is further processed in classical SVM. We also incorporate kernel methods into the above quantum algorithms, which uses both exponential growth Hilbert space of qubits and infinite dimensionality of continuous variable for quantum feature maps. The quantum LS-SVM exploits quantum properties to explore important themes for SVM such as sparsity and kernel methods, and stresses its quantum advantages ranging from speed-up to the potential capacity to solve classically difficult machine learning tasks.  相似文献   

7.
量子态不可克隆体现了量子力学的固有特性,它是量子信息科学的重要基础之一.文章简要介绍了量子不可克隆定理的物理内容以及量子复制机的基本原理,通过幺正坍缩过程我们构造了一种概率量子克隆机,并论证所有线性无关的量子态都可以被概率量子克隆机克隆  相似文献   

8.
Machine learning has become a premier tool in physics and other fields of science.It has been shown that the quantum mechanical scattering problem cannot only be solved with such techniques,but it was argued that the underlying neural network develops the Bom series for shallow potentials.However,classical machine learning algorithms fail in the unitary limit of an infinite scattering length.The unitary limit plays an important role in our understanding of bound strongly interacting fermionic systems and can be realized in cold atom experiments.Here,we develop a formalism that explains the unitary limit in terms of what we define as unitary limit surfaces.This not only allows to investigate the unitary limit geometrically in potential space,but also provides a numerically simple approach towards unnaturally large scattering lengths with standard multilayer perceptrons.Its scope is therefore not limited to applications in nuclear and atomic physics,but includes all systems that exhibit an unnaturally large scale.  相似文献   

9.
We show that in quantum logic of closed subspaces of Hilbert space one cannot substitute quantum operations for classical (standard Hilbert space) ones and treat them as primitive operations. We consider two possible ways of such a substitution and arrive at operation algebras that are not lattices what proves the claim. We devise algorithms and programs which write down any two-variable expression in an orthomodular lattice by means of classical and quantum operations in an identical form. Our results show that lattice structure and classical operations uniquely determine quantum logic underlying Hilbert space. As a consequence of our result, recent proposals for a deduction theorem with quantum operations in an orthomodular lattice as well as a, substitution of quantum operations for the usual standard Hilbert space ones in quantum logic prove to be misleading. Quantum computer quantum logic is also discussed.  相似文献   

10.
Constant-depth quantum circuits that prepare and measure graph states on 2D grids are proved to possess a computational quantum advantage over their classical counterparts due to quantum nonlocality and are also well suited for demonstrations on current superconducting quantum processor architectures. To simulate the partial or full sampling of 2D graph states, a practical two-stage classical strategy that can exactly generate any number of samples (bit strings) from such circuits is proposed. The strategy is inspired by exploiting specific properties of a hidden linear function problem solved by the target quantum circuit, which in particular combines traditional classical parallel algorithms and an explicit gate-based constant-depth classical circuit together. A theoretical analysis reveals that on average each sample can be obtained in nearly constant time for sampling specific circuit instances of large size. Moreover, the feasibility of the theoretical model is demonstrated by implementing typical instances up to 25 qubits on a moderate field programmable gate array platform. Therefore, the strategy can be used as a practical tool for verifying experimental results obtained from shallow quantum circuits of this type.  相似文献   

11.
We introduce superposition-based quantum networks composed of (i) the classical perceptron model of multilayered, feedforward neural networks and (ii) the algebraic model of evolving reticular quantum structures as described in quantum gravity. The main feature of this model is moving from particular neural topologies to a quantum metastructure which embodies many differing topological patterns. Using quantum parallelism, training is possible on superpositions of different network topologies. As a result, not only classical transition functions, but also topology becomes a subject of training. The main feature of our model is that particular neural networks, with different topologies, are quantum states. We consider high-dimensionaldissipative quantum structures as candidates for implementation of the model.  相似文献   

12.
计算的量子飞跃   总被引:5,自引:0,他引:5  
王安民 《物理》2000,29(6):351-357
利用量子力学的迭加和纠缠等特性进行的量子计算是计算技术的巨大飞跃。它能够比经典计算远为有效地解决一些问题。例如最为著名的Shor的算法原则上能够以多项式的时间因子化大的合数,从而使得经典计算机难以计算的这一问题得以解决。文章介绍了至今所发现的主要量子算法的基本原理和步骤,并且概述了量子计算的优越性、现状和发展前景,同时讨论了量子计算在物理学上的应用和意义。  相似文献   

13.
A modern computer system, based on the von Neumann architecture, is a complicated system with several interactive modular parts. It requires a thorough understanding of the physics of information storage, processing, protection, readout, etc. Quantum computing, as the most generic usage of quantum information, follows a hybrid architecture so far, namely, quantum algorithms are stored and controlled classically, and mainly the executions of them are quantum, leading to the so-called quantum processing units. Such a quantum–classical hybrid is constrained by its classical ingredients, and cannot reveal the computational power of a fully quantum computer system as conceived from the beginning of the field. Recently, the nature of quantum information has been further recognized, such as the no-programming and no-control theorems, and the unifying understandings of quantum algorithms and computing models. As a result, in this work, we propose a model of a universal quantum computer system, the quantum version of the von Neumann architecture. It uses ebits (i.e. Bell states) as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit. As a digital quantum system, its global configurations can be viewed as tensor-network states. Its universality is proved by the capability to execute quantum algorithms based on a program composition scheme via a universal quantum gate teleportation. It is also protected by the uncertainty principle, the fundamental law of quantum information, making it quantum-secure and distinct from the classical case. In particular, we introduce a few variants of quantum circuits, including the tailed, nested, and topological ones, to characterize the roles of quantum memory and control, which could also be of independent interest in other contexts. In all, our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems in the near future.  相似文献   

14.
Xue-Yi Guo 《中国物理 B》2023,32(1):10307-010307
Quantum computers promise to solve finite-temperature properties of quantum many-body systems, which is generally challenging for classical computers due to high computational complexities. Here, we report experimental preparations of Gibbs states and excited states of Heisenberg $XX$ and $XXZ$ models by using a 5-qubit programmable superconducting processor. In the experiments, we apply a hybrid quantum-classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits. We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits, which enable us to prepare excited states at arbitrary energy density. We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error. Based on numerical results, we further show that the time complexity of our approach scales polynomially in the number of qubits, revealing its potential in solving large-scale problems.  相似文献   

15.
It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at least quadratically faster than the classical ones.  相似文献   

16.
We introduce superposition-based quantum networks composed of (i) the classical perceptron model of multilayered, feedforward neural networks and (ii) the algebraic model of evolving reticular quantum structures as described in quantum gravity. The main feature of this model is moving from particular neural topologies to a quantum metastructure which embodies many differing topological patterns. Using quantum parallelism, training is possible on superpositions of different network topologies. As a result, not only classical transition functions, but also topology becomes a subject of training. The main feature of our model is that particular neural networks, with different topologies, are quantum states. We consider high-dimensional dissipative quantum structures as candidates for implementation of the model.  相似文献   

17.
Boltzmann machines have useful roles in deep learning applications, such as generative data modeling, initializing weights for other types of networks, or extracting efficient representations from high-dimensional data. Most Boltzmann machines use restricted topologies that exclude looping connectivity, as such connectivity creates complex distributions that are difficult to sample. We have used an open-system quantum annealer to sample from complex distributions and implement Boltzmann machines with looping connectivity. Further, we have created policies mapping Boltzmann machine variables to the quantum bits of an annealer. These policies, based on correlation and entropy metrics, dynamically reconfigure the topology of Boltzmann machines during training and improve performance.  相似文献   

18.
A quantum algorithm for solving the classical NP-complete problem-the hamilton circuit is presented.The algorithm employs the quantum SAT and the quantum search algorithms.The algorithm is square-root faster than classical algorithm,and becomes exponentially faster than classical algoriothm if nonlinear quantum mechanical computer is used.  相似文献   

19.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

20.
General Quantum Interference Principle and Duality Computer   总被引:2,自引:0,他引:2  
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号