首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized Fe3O4@C@Ag nanocomposites through a combination of solvothermal, hydrothermal, and chemical redox reactions. Characterization of the resulting samples by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning and transmission electron microscopy, and magnetic measurement is reported. Compared to Fe3O4@Ag nanocomposites, the Fe3O4@C@Ag nanocomposites showed enhanced antibacterial activity. The Fe3O4@C@Ag nanocomposites were able to almost entirely prevent growth of Escherichia coli when the concentration of Ag nanoparticles was 10 μg/mL. Antibacterial activity of the Fe3O4@C@Ag nanocomposites was maintained for more than 40 h at 37 °C. The intermediate carbon layer not only protects magnetic core, but also improves the dispersion and antibacterial activity of the silver nanoparticles. The magnetic core can be used to control the specific location of the antibacterial agent (via external magnetic field) and to recycle the residual silver nanoparticles. The Fe3O4@C@Ag nanocomposites will have potential uses in many fields as catalysts, absorbents, and bifunctional magnetic-optical materials.  相似文献   

2.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

3.
Two types of ZnO/Bi2O3 nanonecklace heterostructures were fabricated using the vapor-phase transport (VPT) method for the first time. These hierarchical structures were well characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) attached. The growth mechanism of the novel structures were proposed based on these characterizations. Electron-beam irradiation was found to be a powerful and controllable tool in further tailoring such ZnO/Bi2O3 nanonecklace heterostructures. In addition, photoluminescence (PL) emission from the hierarchical nanostructures showed enhancement comparing to the pure Bi2O3 powder.  相似文献   

4.
Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3·6H2O and FeSO4·7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4·H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT–IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively.  相似文献   

5.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by the co-precipitation of Fe3+ and Fe2+ with ammonium hydroxide. The sodium citrate-modified Fe3O4 MNPs were prepared under Ar protection and were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). To improve the oxidation resistance of Fe3O4 MNPs, a silica layer was coated onto the modified and unmodified MNPs by the hydrolysis of tetraethoxysilane (TEOS) at 50 °C and pH 9. Afterwards, the silica-coated Fe3O4 core/shell MNPs were modified by oleic acid (OA) and were tested by IR and VSM. IR results revealed that the OA was successfully grafted onto the silica shell. The Fe3O4/SiO2 core/shell MNPs modified by OA were used to prepare water-based ferrofluids (FFs) using PEG as the second layer of surfactants. The properties of FFs were characterized using a UV-vis spectrophotometer, a Gouy magnetic balance, a laser particle size analyzer and a Brookfield LVDV-III+ rheometer.  相似文献   

6.
Without using inert gas to prevent the oxidation of Fe2+, Fe3O4 nanorods and nanowires have been successfully synthesized via a microwave-assisted ionic liquid method (MAIL). Compared to the traditional methods, the whole reaction process can be carried out more easily and faster. Our result shows that temperature and time of microwave heat played important roles in the formation of Fe3O4 with different morphologies. These products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and FT-IR spectra.  相似文献   

7.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the nanoparticle surface are presented in this paper. In these methods, Fe3O4 nanoparticles were prepared by co-precipitation, and the aging of nanoparticles was improved by applied magnetic field. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). Thereafter, to enhance the compatibility between nanoparticles and water, an effective surface modification method was developed by grafting acrylic acid onto the nanoparticle surface. FT-IR, XRD, transmission electron microscopy (TEM), and thermogravimetry (TG) were used to characterize the resultant sample. The testing results indicated that the polyacrylic acid chains have been covalently bonded to the surface of magnetic Fe3O4 nanoparticles. The effects of initiator dosage, monomer concentration, and reaction temperature on the characteristics of surface-modified Fe3O4 nanoparticles were investigated. Moreover, the Fe3O4-g-PAA hybrid nanoparticles were dispersed in water to form ferrofluids (FFs). The obtained FFs were characterized by UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the high-concentration FF had excellent stability, with high susceptibility and high saturation magnetization. The rheological properties of the FFs were also investigated using a rotating rheometer.  相似文献   

8.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

9.
Cobalt oxalate was used as a precursor to prepare Co3O4 nanorods by thermal decomposition. The combinations of triphenylphosphine and oleylamine were added as surfactants to control the morphology of the particles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The diameters of Co3O4 nanorods are 20 nm and the average lengths are around 500 nm. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors, the enhanced coercivity (Hc) and decreased saturation magnetization (Ms) in contrast to their respective bulk materials. The study provides a simple and efficient route to synthesize Co3O4 nanorods at low temperature.  相似文献   

10.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

11.
In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.  相似文献   

12.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

13.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

14.
Thin Cd2Nb2O7 films were grown on single-crystal p-type SiO2/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO2/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements.  相似文献   

15.
张日晨  刘玲  许小亮 《中国物理 B》2011,20(8):86101-086101
A luminescent superparamagnetic nanocomposite with an Fe 3 O 4-SiO 2-CdS structure is synthesized.Coated with a silica shell,Fe 3 O 4 nanoparticles and CdS quantum dots (QDs) are successfully assembled together.Analysed from the test results of X-ray diffraction (XRD),transmission electron microscopy (TEM),high resolution transmission electron microscopy (HRTEM),hysteresis loop,and photoluminescence (PL) spectrum,these nanocomposites exhibit superparamagnetic and photoluminescent properties.  相似文献   

16.
Fe2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidizing methanol. These powders were characterized by ultraviolet (UV)-visible diffuse reflectance spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the Fe2O3/SrTiO3 composite powders with optimum proportion exhibited higher photocatalytic activity than pure SrTiO3, Fe2O3 and TiO2 (P25) under visible light (λ>440 nm) irradiation. The SEM image of the composite powders showed that SrTiO3 and Fe2O3 particles contacted well. Further research revealed that the calcination temperature is an important factor in the preparation of the composite powder with relatively high photocatalytic ability.  相似文献   

17.
A new and relatively general route was developed to fabricate graphene oxide (GO)-Fe3O4 hybrid. X-ray diffraction, transmission electron morphology, X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrum were used to demonstrate the successful attachment of iron oxide nanoparticles to GO sheets. Transmission electron microscopy observation indicates that the size of the Fe3O4 nanoparticles was about 2.7 nm with narrow size distribution. Moreover, this hybrid shows superparamagnetic property and allows the rapid separation under an external-magnetic field. In addition, the method could be extended to further development of graphene-based nanoelectronics.  相似文献   

18.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

19.
In this paper, we propose a facile one-step strategy to prepare Fe3O4@amorphous carbon/reduced graphite oxide nanocomposites (FCRGs) under hydrothermal conditions. A transmission electron microscopy image has shown that the as-formed Fe3O4 nanoparticles coated with a layer of amorphous carbon are wrapped by reduced graphite oxide (r-GO) sheets. The diameter of Fe3O4 nanoparticles is less than 50 nm. N2 adsorption/desorption isotherms indicate that the specific surface area of FCRG is 31.6 m2/g with porous structure. FCRG exhibits improved cycling stability and rate performances as a potential anode material for high-performance lithium ion batteries.  相似文献   

20.
A new hierarchical nanostructure that consists of cobalt oxide (Co3O4) and zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, cobalt acetate tetrahydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 600 °C for 1 h, produced Co3O4 nanofibers with rough surfaces containing ZnO nanoparticles (i.e., ZnO-doped Co3O4 nanofibers). The rough surfaced nanofibers, containing ZnO nanoparticles (ZnNPs), were then exploited as seeds to produce ZnO nanobranches using a specific hydrothermal technique. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometery (XRD) analysis was used to study the chemical composition and the crystallographic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号