首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice. In particular, by introducing a quantum opto-electro-mechanical interface, we are able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of the topological qubits and the scalability of the superconducting qubits in this hybrid architecture.  相似文献   

2.
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.  相似文献   

3.
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.  相似文献   

4.
We propose to implement a quantum switch scheme for coupling highly detuned superconducting qubits connected by a gap-tunable bridge qubit. By modulating the frequency of the bridge qubit, it can be used as a coupler to switch on/off and adjust the coupling strength between the initially non-interaction qubits. It is shown that the proposals of quantum information transfer and quantum entangled gate between two highly detuned qubits can be implemented with high fidelity. Moreover, we extend the case of coupling the switch to multiple qubits for the generation of W states. The advantages of our scheme are that it eliminates the need for tuning the gaps of the qubits and the cross-talk interaction is greatly suppressed. The influence of decoherence and parameter variation is also investigated by numerical simulation, which suggests that the present scheme is feasible in current experiment.  相似文献   

5.
Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.  相似文献   

6.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.  相似文献   

7.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

8.
We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.  相似文献   

9.
The spin qubit in quantum dots is one of the leading platforms for quantum computation.A crucial requirement for scalable quantum information processing is the high efficient measurement.Here we analyze the measurement process of a quantum-dot spin qubit coupled to a superconducting transmission line resonator.Especially,the phase shift of the resonator is sensitive to the spin states and the gate operations.The response of the resonator can be used to measure the spin qubit efficiently,which can be extend to read out the multiple spin qubits in a scalable solid-state quantum processor.  相似文献   

10.
By using 2-photon 4-qubit cluster states we demonstrate deterministic one-way quantum computation in a single qubit rotation algorithm. In this operation feed-forward measurements are automatically implemented by properly choosing the measurement basis of the qubits, while Pauli error corrections are realized by using two fast driven Pockels cells. We realized also a C-NOT gate for equatorial qubits and a C-PHASE gate for a generic target qubit. Our results demonstrate that 2-photon cluster states can be used for rapid and efficient deterministic one-way quantum computing.  相似文献   

11.
Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state |iof the chain is swapped into the state |N-i within a time evolution interval τ.Such a phenomenon is an interesting way of transfering entanglement.An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past.We exploit such an expressions for calculating the evolution times in chains of both two and three spins.In the case of a chain of two qubits,we derive conditions under which the associated four Bell states diagonalize the Hamiltonian.It is found that for the two Bell states |Φ+and|Φ-,perfect mirroring does not occur(i.e.entanglement is not preserved under swapping).On the other hand,perfect single qubit mirror effect(entanglement preservation) indeed occurs for the other two Bell states |Ψ+and|Ψ- which are mapped into |Φ+and|Φ-respectively.For the case of a chain of three qubits,the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states ψ1,ψ2,χ1,and χ2 are studied.Due to the fact that quantum mirroring preserves maximal entanglement,the states ψ1 and ψ2 are not altered.However,quantum mirroring changes the states χ1 and χ2 only if we apply perfect quantum state mirroring in the site a=1 of the three qubits spin chain.The above constrains the preservation of maximal entanglement under qubit mirroring of such a state.Due to the fact that swapping has already been experimentally tested,a posible experimental implementations of single qubit mirroring is possible.  相似文献   

12.
We introduce a new design concept for superconducting phase quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single-shot measurements.  相似文献   

13.
赵虎  李铁夫  刘建设  陈炜 《物理学报》2012,61(15):154214-154214
超导量子计算是目前被认为最有希望实现量子计算机的方案之一. 超导量子比特是超导量子计算的核心部件. 如何尽可能的增加超导量子比特的退相干时间, 大规模的集成超导量子比特已成为超导量子计算研究的主要方向. 超导量子比特作为宏观的人工原子, 有许多量子光学现象都能够在其中观测到. 利用超导量子比特实现电磁感应透明为研究超导量子比特的退相干机理提供了新手段, 为研究非线性光学、光存储、光的超慢速传输等量子光学效应开辟了新思路. 本文介绍了电磁感应透明的理论基础, 总结了目前针对超导量子比特的电磁感应透明研究进展, 对比了一般气体原子与超导量子比特的电磁感应透明区别, 并对超导量子比特实现电磁感应透明的潜在应用进行了总结和展望.  相似文献   

14.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

15.
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.  相似文献   

16.
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.  相似文献   

17.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

18.
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit later on. These results constitute a proof of concept of spin-ensemble based quantum memory for superconducting qubits.  相似文献   

19.
Superconducting qubits connected in an array can form quantum many-body systems such as the quantum Ising model. By coupling the qubits to a superconducting resonator, the combined system forms a circuit QED system. Here, we study the nonlinear behavior in the many-body state of the qubit array using a semiclassical approach. We show that sudden switchings as well as a bistable regime between the ferromagnetic phase and the paramagnetic phase can be observed in the qubit array. A superconducting circuit to implement this system is presented with realistic parameters.  相似文献   

20.
A theoretical scheme for the generation of maximally entangled states of two superconducting flux qubits via their sequential interaction with a monochromatic quantum field is presented. The coupling of the qubits with the quantized field can be tuned on and off resonance by modulating the effective Josephson energy of each qubit via an externally applied magnetic flux. The system operates in such a way as to transfer the entanglement from a bipartite field-qubit subsystem to the two qubits. This scheme is attractive in view of the implementation of practical quantum processing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号