首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Hai-Xiao Zhang 《中国物理 B》2022,31(12):124301-124301
The explorations of parity-time ($\mathcal{PT}$)-symmetric acoustics have resided at the frontier in physics, and the pre-existing accessing of exceptional points typically depends on Fabry-Perot resonances of the coupling interlayer sandwiched between balanced gain and loss components. Nevertheless, the concise $\mathcal{PT}$-symmetric acoustic heterostructure, eliminating extra interactions caused by the interlayer, has not been researched in depth. Here we derive the generalized unitary relation for one-dimensional (1D) $\mathcal{PT}$-symmetric heterostructure of arbitrary complexity, and demonstrate four disparate patterns of anisotropic transmission resonances (ATRs) accompanied by corresponding spontaneous phase transitions. As a special case of ATR, the occasional bidirectional transmission resonance reconsolidates the ATR frequencies that split when waves incident from opposite directions, whose spatial profiles distinguish from a unitary structure. The derived theoretical relation can serve as a predominant signature for the presence of $\mathcal{PT}$ symmetry and $\mathcal{PT}$-symmetry-breaking transition, which may provide substantial support for the development of prototype devices with asymmetric acoustic responses.  相似文献   

2.
K.S. Challagulla 《哲学杂志》2013,93(14):1197-1222
A micromechanical model based on the asymptotic homogenization technique has been developed to predict the complete elastic, dielectric and piezoelectric properties of a general 2-2 layered piezoelectric composite where the constituent phases are elastically anisotropic and piezoelectrically active. Two classes of layered piezoelectric composites (i.e. longitudinally and transversely layered) are considered in two widely different ceramic- and polymer-based systems and their effective properties are obtained in the limits of both large-volume (i.e. bulk) and small-volume (i.e. thin-film) systems. It is demonstrated that: (i) in the bulk, ceramic–ceramic layered composite system, the elastic, piezoelectric, and dielectric properties of the composites vary linearly with volume fraction of the second phase, while in the bulk ceramic–polymer layered composite system, the corresponding properties vary non-linearly with volume fraction of the second phase; (ii) in the prismatic (thin-film) layered piezoelectric composite system, the non-vanishing, effective elastic, piezoelectric and dielectric properties vary linearly with the volume fraction of the second phase for both the longitudinally and transversely layered composite structures in the ceramic–ceramic and the ceramic–polymer composite systems; (iii) the ceramic–polymer piezoelectric layered composites that incorporate a low density polymeric phase with lower acoustic impedance generally exhibit enhanced piezoelectric coupling constants and lowered acoustic impedance; (iv) the longitudinally layered composites exhibit higher piezoelectric coupling constants and lower acoustic impedance compared to that of the transversely layered composites; and (v) the best combination of properties for applications such as hydrophones (i.e. the highest piezoelectric coupling constants and the lowest acoustic impedance) is obtained in the ceramic–polymer, longitudinally layered, thin-film, piezoelectric composites.  相似文献   

3.
Health monitoring of a composite wingbox structure   总被引:1,自引:0,他引:1  
This work was devoted to the development of a health monitoring system assigned to aerospace applications. Those applications concerned the detection of damaging impacts and debonding between stiffeners and composite skins, since they are the major causes of in-service damage of aircraft structures. The chosen health monitoring system was first based on the excitation and reception of Lamb waves along the structure by using thin piezoelectric transducers (active mode) and secondly on a continuous monitoring taking the same transducers used as acoustic emission sensors (passive mode). The composite specimen used was consistent with aircraft wingbox in terms of structure and loading. Several impacts with increasing energy increments were applied on the composite specimen. In passive mode, the study showed the ability of using the acoustic signature of an impact to detect possible damage. Moreover, the damage emergence in the case of damaging impact was confirmed in active mode. Further measurements during fatigue testing were performed. The aim was to demonstrate the ability of the system to monitor disbond growth between the stiffener and the composite skin. The sensitivity of the health monitoring system to the disbond growth was further demonstrated.  相似文献   

4.
All nine elastic moduli of an orthotropic composite material, namely, polypropylene reinforced with glass fiber, are determined from the measured values of the bulk acoustic wave velocities along specific directions in the planes of symmetry of the material. These data are used to calculate the angular dependences of phase velocities, polarization vectors, and directions of ray velocities of bulk waves in the composite. It is demonstrated that the difference in the velocities of shear waves polarized along and across the glass fiber gives rise to an acoustic birefringence and can lead to an elliptical polarization of waves. The measurement of the phase velocities of shear waves as functions of the wave polarization is suggested as a method for the determination of the fiber orientation in a composite material.  相似文献   

5.
The propagation of surface acoustic waves in a system composed of two piezoelectric crystals moving with respect to each other and separated by a vacuum gap is considered. The waves are localized on different sides of the gap and coupled only through the electrostatic interaction. It is shown that when the velocity of the relative motion of crystals is close to some value, there occurs a wave instability resulting in a resonant generation of these surface waves. The rate of growth of Bleustein-Gulyaev waves in piezoelectric crystals of 6mm symmetry class is determined analytically.  相似文献   

6.
《Comptes Rendus Physique》2016,17(5):533-542
The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation.  相似文献   

7.
This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.  相似文献   

8.
Starting from the general modal solutions for a homogeneous layer of arbitrary material and crystalline symmetry, a matrix formalism is developed to establish the semianalytical expressions of the surface impedance matrices (SIM) for a single piezoelectric layer. By applying the electrical boundary conditions, the layer impedance matrix is reduced to a unified elastic form whether the material is piezoelectric or not. The characteristic equation for the dispersion curves is derived in both forms of a three-dimensional acoustic SIM and of an electrical scalar function. The same approach is extended to multilayered structures such as a piezoelectric layer sandwiched in between two metallic electrodes, a Bragg coupler, and a semi-infinite substrate as well. The effectiveness of the approach is numerically demonstrated by its ability to determine the full spectra of guided modes, even at extremely high frequencies, in layered plates comprising up to four layers and three materials. Negative slope in f-k curve for some modes, asymptotic behavior at short wavelength regime, as well as wave confinement phenomena made evident by the numerical results are analyzed and interpreted in terms of the surface acoustic waves and of the interfacial waves in connection with the bulk waves in massive materials.  相似文献   

9.
The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.  相似文献   

10.
By using the transfer matrix method, we theoretically studied the propagation of a longitudinal acoustic wave in a one-dimensional phononic crystal (PnC) that contains a piezoelectric material as a defect layer. A pass band can be generated and controlled in the middle of the band gap. The pass band position is tuned by applying an external electric field. The position of the pass band inside the band gap is tuned by the changing of temperature. We introduce a comparison between temperature effects on two piezoelectric materials, PZT-5H and 0.7 PMN-0.3PT inside a PnC structure. Moreover, the pass band is shifted towards high or low frequencies by temperature decrement or increment, respectively. The simulated results provide a valuable guidance for PnC applications such as acoustic switch and temperature sensor.  相似文献   

11.
The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8–15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3–25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.  相似文献   

12.
Considering a piezo-plasma-like layer with finite thickness and hexagonal symmetry whose main symmetry axis is parallel to the z axis and approximating it by an isotropic medium, we study the coupling of the elastic wave with plasma properties of the medium with and without spatial dispersion and collisions. In this case we investigate the coupled surface quasi elasto-electromagnetic wave propagating on the interface of piezoelectric layer with vacuum. Furthermore, the coupling of elasticity and ion-acoustic waves is investigated.  相似文献   

13.
Qian ZH  Jin F  Hirose S 《Ultrasonics》2011,51(8):853-856
The propagation of transverse surface waves in a piezoelectric layer/metal substrate system with one or multiple hard metal interlayer(s) is investigated analytically. The general dispersion equations for the existence of the waves are obtained in a simple mathematic form for class 6 mm piezoelectric materials. The presence of a hard metal interlayer can not only get rid of the undesired mode appearing in the case without an interlayer but shorten the existence range of the phase velocity within which a nonleaky but dispersive mode exists. The effects of the hard interlayer on the phase velocity can be used to manipulate the behavior of the waves and has implications in acoustic wave devices.  相似文献   

14.
In this paper, the existence theorem of localized shear horizontal acoustic waves in a piezoelectric plate with two semi-infinite same/different coatings is established. Some properties of the waves in the waveguide structures are also discussed. The results show that the waveguides have some advantages and provide more choice for the designs of acoustic devices.  相似文献   

15.
《Comptes Rendus Physique》2016,17(5):501-511
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.  相似文献   

16.
The properties of slit electroacoustic waves that propagate in a system of two semi-infinite piezoelectric media separated by a vacuum gap, in a system consisting of a thin piezoelectric plate and a semi-infinite piezoelectric medium separated by a gap, and in a system consisting of two thin piezoelectric plates separated by a vacuum gap are studied. The process of transformation of slit electroacoustic waves to generalized surface acoustic waves or to Lamb waves is considered.  相似文献   

17.
An electroacoustic transducer in the form of a piezoelectric of the 6mm symmetry class with an arbitrary orientation of the sixfold axis and with two finite-thickness metal electrodes is considered taking into account the acoustic attenuation in the transducer layers. A system of equations is obtained to determine the impedance of the transducer, the radiation resistances for shear and longitudinal waves, the power ratio of these waves in the acoustic line, and the transformation factors for transverse and longitudinal waves. The effect of attenuation on the characteristics of a specific transducer operating in the 15-GHz frequency range is numerically analyzed.  相似文献   

18.
《中国物理 B》2021,30(10):100309-100309
Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT) symmetry show peculiar phenomena, such as the presence of an exceptional point(EP) at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate. Near the EP, the system could be more sensitive to external perturbations and this may lead to enhanced sensing. In this paper, we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit. The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency. This method is simple with no requirements for additional elements or qubit device modifications. We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.  相似文献   

19.
In this paper a multiple strained layer structure with multiple quantum wells as a piezoelectric transducer is proposed for generating and detecting nano ultrasound waves with nanometer wavelength and tera hertz frequency. By inducing femtosecond optical pulses at this strained structure, internal piezoelectric field is changed. As a result longitudinal acoustic phonon oscillations can be treated as nano acoustic waves. It could be noticed in simulated cases that detection of nano ultrasound waves can be used in non destructive testing and high accuracy measurements with this structure. It is also shown that the MQW structure design how influences in generated nano acoustic waves.  相似文献   

20.
Yamamoto K  Kokubo A  Sakai K  Takagi K 《Ultrasonics》2000,38(1-8):830-833
We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号