首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the importance of interface modification on improving electron confinement by preparing Pb quantum islands on Si(111) substrates with two different surface reconstructions, i.e., Si(111)-7 ×7 and Si(111)- Root3×Root3-Pb (hereafter, 7 ×7 and R3). Characterization with scanning tunneling microscopy/spectroscopy shows that growing Pb films directly on a 7 × 7 surface will generate many interface defects, which makes the lifetime of quantum well states (QWSs) strongly dependent on surface locations. On the other hand, QWSs in Pb films on an R3 surface are well defined with small variations in linewidth on different surface locations and are much sharper than those on the 7 × 7 surface. We show that the enhancement in quantum confinement is primarily due to the reduced electron-defect scattering at the interface.  相似文献   

2.
We study the Pb growth on both √3 × √3-In and 4 × 1-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 × √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 × 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 × 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.  相似文献   

3.
邱丰  王猛  周化光  郑璇  林鑫  黄卫东 《物理学报》2013,62(12):120203-120203
采用分子动力学方法研究了Pb液滴在Ni(100)晶面、(110)晶面和(111)晶面的铺展润湿行为. 结果表明: Pb液滴在Ni(100)及(111)基底上的润湿铺展现象呈各向同性, 而在Ni(110)基底上的润湿铺展现象呈明显的各向异性, 且这种各向异性源于Ni(110)晶面点阵结构上Pb原子沿不同晶向的扩散机制及速度的明显差异; Pb液滴在Ni(111)晶面上铺展时, 未发生表面合金化, 液滴铺展动力学描述近似满足 R2t, 而液滴在(100)晶面和(110)晶面上铺展时表面产生合金化现象, 铺展动力学关系近似满足 R4t, 且液滴在(100)晶面上的铺展速度高于(110)晶面上的铺展速度. 关键词: 分子动力学 润湿各向异性 铺展膜 扩散机制  相似文献   

4.
吴黎黎  吴锋民 《计算物理》2013,30(3):441-446
用动态Monte-Carlo方法对Ge在单层表面活性剂Pb覆盖的Si(111)表面上沿团簇边缘扩散进行三维模拟.重点讨论Ge原子是否沿团簇边缘扩散,沿边缘扩散时的最大扩散步数及最近邻原子数对三维生长的影响,并计算薄膜表面粗糙度研究三维生长模式.模拟表明Ge沿团簇边缘扩散的行为对薄膜生长模式的影响很大,同时讨论了ES势对三维生长模式的影响.  相似文献   

5.
Growth mechanism and morphology of Ge on Pb covered Si(111) surfaces   总被引:1,自引:0,他引:1  
We study the mechanism and surface morphology in epitaxial growth of Ge on Pb covered Si(111) using a scanning tunneling microscope (STM). We find that Ge adatoms have a very large diffusion length at room temperature. The growth is close to perfect layer-by-layer for the first two bilayers. Surface roughness increases gradually with the film thickness, but no 3D islands are found at room temperature. For growth at 200°C, 3D Ge islands appear after completion of the second bilayer. At room temperature, we believe, the Pb layer enhances surface diffusion and the descending-step motion of Ge adatoms, but the ascending-step motion is hindered and thus 3D island growth is suppressed.  相似文献   

6.
We present our first-principles calculation of the adsorption and diffusion of a carbon adatom on the H-terminated and clean Ge(110) surfaces, which are essential processes in the nucleation and growth of a monolayer graphene on Ge(110) by chemical vapor deposition. On the H-terminated surface, the C adatom spontaneously substitutes H atom(s) to form a monohydride structure (CH) or a dihydride structure (CH2) and makes direct bonds with the substrate Ge atoms. The resulting diffusion barriers of the C adatom are 2.67 and 6.45 eV parallel to and perpendicular to the zigzag Ge chains of the surface, respectively. On the clean surface, the C adatom embeds into the zigzag Ge chain with nearly no barrier, kicking out a Ge atom out of the chain at the same time. The kicked-out Ge atom, instead of the C adatom, becomes a diffusion species with the barrier less than 0.63 eV. The formation of the C composite structures makes the C adatom difficult to diffuse both on the H-terminated and clean Ge(110) surfaces, which suggests that the nucleation and growth of the graphene islands from C seeds is much suppressed. We propose a growth mechanism of graphene monolayer going round the diffusion of the C adatoms on the Ge(110) surfaces.  相似文献   

7.
A study is reported of the role played by covalent interaction in the coupling of graphene formed on Ni(111) to the Ni substrate and after intercalation of Au and Cu monolayers underneath the graphene. Covalent interaction of the graphene π states with d states of the underlying metal (Ni, Au, Cu) has been shown to bring about noticeable distortion of the dispersion relations of the graphene electronic π states in the region of crossing with d states, which can be described in terms of avoided-crossing effects and formation of bonding and antibonding d-π states. The overall graphene coupling to a substrate is mediated by the energy and occupation of the hybridized states involved. Because graphene formed directly on the Ni(111) surface has only bonding-type occupied states, the coupling to the substrate is very strong. Interaction with intercalated Au and Cu layers makes occupation of states of the antibonding and bonding types comparable, which translates into a weak resultant overall coupling of graphene to the substrate. As a result, after intercalation of Au atoms, the electronic structure becomes similar to that of quasi-free-standing graphene, with linear dispersion of π states at the K point of the Brillouin zone and the Dirac point localized close to the Fermi level. Intercalation of Cu atoms under the graphene monolayer results, besides generation of covalent interaction, in a slight charge transport, with a partial occupation of the previously unoccupied π* states and the Dirac point shifted by 0.35 eV toward increasing binding energy.  相似文献   

8.
Gold and lead clusters were grown by the evaporation of metal atoms on rare gas layers on Au(111) and Pb(111). The growth was investigated with scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We studied the electronic coupling to the surface and charging effects in the photoemission process. For a rare gas film thickness of 60 ML we observed an electronic decoupling: the cluster spectra are no longer referenced to the Fermi edge, but to the vacuum energy of the substrate. For Pb clusters on a Au(111) substrate this leads to the remarkable result of a cluster-photoelectron signal above the Fermi energy defined by the ground level of the sample holder. PACS 33.60.Cv; 36.40.Mr; 68.37.Ef; 61.46.+w; 73.22.-f  相似文献   

9.
Incorporating self-assembled Ge islands on Si surfaces into electronic devices has been suggested as a means of forming small features without fine-scale litho- graphy. For use in electronic devices, the electrical properties of the deposited Ge and their relation to the underlying Si substrate must be known. This report presents the results of a surface photovoltage investigation of the surface energy barrier as increasing amounts of Ge are added to a Si surface by chemical vapor deposition. The results are interpreted in terms of band discontinuities and surface states. The surface barrier increases as a wetting layer is deposited and continues to increase as defect-free islands form. It saturates as the islands grow. As the amount of Ge continues increasing, defects form, and the surface barrier decreases because of the resulting allowed states at the Ge/Si interface. Qualitatively similar behavior is found for Si(001) and Si(111). Covering the Ge with Si reduces the surface-state density and possibly modifies the wetting layer, decreasing the barrier to one more characteristic of Si. Initial hydrogen termination of the surface decreases the active surface-state density. As the H desorbs, the surface barrier increases until it stabilizes as the surface oxidizes. The behavior is briefly correlated with scanning-tunneling spectroscopy data. Received: 13 November 2000 / Accepted: 14 November 2000 / Published online: 23 May 2001  相似文献   

10.
刘梦溪  张艳锋  刘忠范 《物理学报》2015,64(7):78101-078101
石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.  相似文献   

11.
Using a low temperature growth method, we have prepared atomically flat Pb thin films over a wide range of film thickness on a Si-(111)-7 x 7 surface. The Pb film morphology and electronic structure are investigated in situ by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. Well-defined and atomic-layer-resolved quantum-well states of the Pb films are used to determine the band structure and the electron-phonon coupling constant (lambda) of the films. We found an oscillatory behavior of lambda with an oscillation periodicity of two atomic layers. Almost all essential features in the Pb/Si(111) system, such as the growth mode, the oscillatory film stability, and the 9 monolayer envelope beating pattern, can be explained by our results in terms of the electron confinement in Pb films.  相似文献   

12.
Photoemission study of atomically flat Pb films with a thickness from 15 to 24 monolayers (ML) have been performed within a temperature range 75-270K. Well-defined quantum well states (QWSs) are observed, which exhibit interesting temperature-dependent behaviours. The peak position of the QWSs shifts towards higher binding energy with increasing substrate temperature, whereas the peak width broadens linearly due to enhanced electron-phonon coupling strength (λ). An oscillatory A with a period of 2ML is deduced. Preliminary analysis shows that the oscillation can be explained in terms of the interface induced phase variations, and is thus a manifestation of the quantum size effects.  相似文献   

13.
Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrow's electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene monolayer grown on a Pt(111) surface and investigated its impact in the electronic, structural, and magnetic properties of the graphene layer. Our low temperature scanning tunneling microscopy studies, complemented by density functional theory, show the existence of a broad electronic resonance above the Fermi energy associated with the vacancies. Vacancy sites become reactive leading to an increase of the coupling between the graphene layer and the metal substrate at these points; this gives rise to a rapid decay of the localized state and the quenching of the magnetic moment associated with carbon vacancies in freestanding graphene layers.  相似文献   

14.
This paper summarizes our recent work on the study of quantum size effects (QSE) and novel physical properties of the Pb/Si (111) heterostructure. Two different types of samples were investigated. One is wedge-shaped Pb islands, and the other is atomically flat Pb thin films. With scanning tunneling microscopy (STM) manipulation, we observed an intriguing morphology dynamics of the islands that swings between two extreme energy states, like that in a classical pendulum. We show that the dynamics is a result of the competition between the QSE and the classical step free energy minimizing effect. For the second type of the samples, the QSE is studied in terms of thickness-dependent film stability, electronic structure and physical properties by using STM, angle-resolved photoemission spectroscopy (ARPES) and transport measurement. The results consistently reveal the formation of quantum well states (QWS) due to electron confinement in the films. This size effect could greatly modify the electronic structure near the Fermi level and lead to quantum oscillations in superconductivity, electron-phonon coupling and thermal expansion. The work unambiguously demonstrates the possibility of quantum engineering of physical properties of thin films by exploiting well-controlled and thickness-dependent QSE.  相似文献   

15.
刘战辉  张李骊  李庆芳  张荣  修向前  谢自力  单云 《物理学报》2014,63(20):207304-207304
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.  相似文献   

16.
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.  相似文献   

17.
A phase transition leading to the transformation of a graphene layer into a multilayer graphite film at the surface of a carbonized metal has been experimentally studied on the atomic level under ultrahigh-vacuum conditions. It has been shown that this process is governed by dynamic equilibrium between edge atoms of graphene islands and a chemisorbed carbon phase, two-dimensional carbon “gas,” and is observed in the temperature range of 1000–1800 K. The features of the phase transition at the surfaces Ni(111), Rh(111), and Re(10-10) are similar, although the specific kinetic characteristics of the process depend on the properties of the substrate. It has been shown that change in the emissivity of the substrate after the formation of a multilayer graphite film increases the rate of the phase transition and leads to a temperature hysteresis.  相似文献   

18.
We propose that the indirect adatom-adatom interaction mediated by the conduction electrons of a metallic surface is responsible for the sqrt[3]xsqrt[3]<==>3x3 structural phase transitions observed in Sn/Ge (111) and Pb/Ge (111). When the indirect interaction overwhelms the local stress field imposed by the substrate registry, the system suffers a phonon instability, resulting in a structural phase transition in the adlayer. Our theory is capable of explaining all the salient features of the sqrt[3]xsqrt[3]<==>3x3 transitions observed in Sn/Ge (111) and Pb/Ge (111), and is in principle applicable to a wide class of systems whose surfaces are metallic before the transition.  相似文献   

19.
An intriguing growth morphology of Pb islands on a Si(111) surface is observed in our STM experiments: the growth of a Pb layer on Pb islands with unstable heights starts from the periphery and moves towards the center, while the nucleation of the next layer on stable Pb islands starts away from the periphery. Using first-principles total energy calculations, we have studied the diffusion barriers of Pb adatoms on a freestanding Pb(111) film as a function of film thickness. The diffusion barriers are found to be very low (<60 meV), and a bi-layer oscillation due to the quantum size effect (QSE) is observed, with a lower barrier on the odd-layered, relatively unstable Pb films. The diffusion barrier difference between the odd- and even-layered film is as large as 40 meV. The observed unusual growth can be attributed to this big difference in the diffusion barriers due to QSE.  相似文献   

20.
Lattice match is important for epitaxial growth. We show that a competing mechanism, electronic match, can dominate at small film thicknesses for metal-semiconductor systems, where quantum confinement and symmetry requirements may favor a different growth pattern. For Pb(111) on Ge(111), an accidental lattice match leads to a √3 × √3 configuration involving a 30° in-plane rotation at large film thicknesses, but it gives way to an incommensurate (1 × 1) configuration at small film thickness. The transformation follows an approximately inverse-film-thickness dependence with superimposed bilayer oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号