首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The single-molecule surface-enhanced Raman scattering(SERS) spectra of Rhodamine 6G(R6G) in an aqueous environment under non-resonance conditions are studied.Series of spectra are recorded in timemapping mode,and intensity fluctuations of SERS signals and spectral diffusion are observed.The correlations between the presence frequency of SERS spectra and number of hot spots as well as the quantity of molecules in scattering volume are examined thoroughly.The results indicate that only molecules located at hot spots produce good signal-to-noise ratio Raman spectra and the origin of fluctuating SERS signals are mainly ascribed to the movement of hot spots.  相似文献   

2.
We review recent our results in the fundamental study of surface-enhanced Raman scattering (SERS) with emphasis on experiments that attempted to identify the enhancement and blinking mechanism using single Ag nanoparticle dimers attached to dye molecules. These results are quantitatively discussed in the framework of electromagnetic mechanism. We also review recent our results in basic SERS applications for biological sensing regarding detections of cell surface molecules and distinction of disease marker molecules under single cell and single molecule level.  相似文献   

3.
用一种廉价的电解方法制备了纳米银膜,并详细研究了在这种银膜上的表面增强拉曼散射效果.结晶紫为本实验的检测性分子.通过实验发现,这种银膜用便携式拉曼光谱仪测试并计算出的表面增强拉曼散射的增强因子为603,并对结晶紫的最小检出限为0.1 nmol/L  相似文献   

4.
Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.  相似文献   

5.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Deposition of coinage metals on a crystallographic surface of a colloidal crystal is proposed with the aim of fabricating metal surfaces with a regular relief on a scale of 200–300 nm to get strong surface-enhanced Raman scattering (SERS). The approach is implemented through thin gold-film deposition on a surface of a crystal consisting of silica globules. Mitoxantrone molecules, a DNA intercalator, were used to prove high SERS efficiency of the structures proposed. As compared to other SERS-active substrates, metal-dielectric colloidal crystal structures possess well-defined surface parameters (globule diameter and film thickness), high stability and reproducibility. These advantages are important for systematic analysis of SERS mechanisms in mesoscopic structures and its application in single-molecule detection.  相似文献   

7.
维生素K3的表面增强拉曼光谱研究   总被引:2,自引:0,他引:2  
首次报道了维生素K3 (VK3 )分子的常规拉曼光谱 (NRS)及该分子在活性衬底银镜上的表面增强拉曼散射 (SERS) ,并对它的拉曼特征谱带进行了初步的指认和归属。通过对比VK3 的常规拉曼光谱和SERS谱 ,发现VK3 分子吸附在银表面后拉曼散射强度被大大增强了。另外 ,VK3 的羰基与银粒子发生电荷转移后形成负离子自由基 ,碳氧双键打开。受VK3 分子吸附在银镜表面的影响 ,萘环结构发生了很大的扰动 ,导致一些拉曼特征峰产生位移 ,环变形振动对应的拉曼散射强度得到了增强。这些研究结果为SERS技术今后对VK3进行药物检测以及痕量分析方面的应用提供了依据。  相似文献   

8.
表面增强拉曼光谱是一种表面灵敏度极高的“指纹”光谱技术,检测限可达单分子级别。它可以实现痕量物质的特异性识别及快速、无损检测,广泛应用于生命科学、电化学、环境安全等领域以及人们的日常生活中。通过种子生长法成功地实现了形貌均匀、尺寸可调的球形金纳米粒子的制备,并以此作为增强基底进一步探索其粒径对尿酸拉曼谱峰强度的影响。结果表明,金纳米粒子的尺寸显著影响其拉曼增强能力。在研究范围内,随着金纳米粒子尺寸的增加,其拉曼增强能力逐渐增加。在激光波长为638 nm时,150 nm的金纳米粒子具有最优的拉曼增强能力。这使得它们可适用于尿酸溶液的快速高灵敏度分析,检测限可达0.01 mmol·L-1。进一步的研究还表明,该方法可用于痕量尿酸的定量检测。在0.01~0.5 mmol·L-1范围内,尿酸的浓度与其特征拉曼峰640 cm-1处的峰强度之间呈线性关系,线性相关系数达0.98。将该方法用于真实样品(正常人体尿液)的快速检测,发现该方法不受尿液中其他成分的干扰,可以实现人体尿液中尿酸含量的快速测定。研究结果表明,以金纳米粒子作为基底的表面增强拉曼光谱方法可方便、快速地对尿液中尿酸的含量进行分析,极大地拓展了表面增强拉曼光谱在临床上的应用与研究。  相似文献   

9.
We report on the synthesis of indium–silver bimetallic nanocomposites by chemical reduction method under atmospheric condition and their activity for surface-enhanced Raman scattering (SERS). It is found that the indium–silver bimetallic nanocomposites have better SERS activity with larger enhancement factors (EF) than pure silver nanoparticles with similar size. The SERS EF can reach 107 for 4-mercaptobenzoic acid and 109 for crystal violet and rhodamine 6G adsorbed on the nanocomposites and the detection limits can be at least down to 10?7 and 10?10 M, respectively. The results demonstrate that the indium–silver bimetallic nanocomposites are promising as SERS substrate for a myriad of chemical and biological sensing applications.  相似文献   

10.
We report a two‐step enhancement of Raman scattering signal (η) of a few dye molecules. In the first step, high‐quality surface‐enhanced Raman scattering (SERS) substrates have been used. The SERS substrates were fabricated by direct current sputtering of Au followed by thermal annealing. The role of thermal annealing of the SERS substrates and numerical aperture of Raman microscopic objective lens on the enhancement has been studied for optimizing the enhancement in the SERS technique. In the second step, the value of η obtained with conventional SERS technique has been improved significantly with the help of photonic nanojet (PNJ) of an optical microsphere (PNJ‐mediated SERS technique). The signal to noise ratio and reproducibility of the experimental results have been found to be very high. Based on our theoretical simulations on PNJ, a few suitable parameters have been proposed for obtaining better enhancement using this technique. To the best of our belief, this report will enable the SERS community to improve η value with ease. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We report a high-yield synthesis of star-shaped gold nanostructures in one step, using a new surfactant-free wet chemistry method. Compared to the existing reports, these nanostars were found to have longer and sharper spikes anchored uniformly on the surface of the spherical core, allowing at least a few hot spots irrespective of the incident light polarization. The average experimental values of core radius and spike length were found to be 88.5 and 72 nm, respectively. Using these values in numerical simulations, the local electric field enhancement (η) and localized surface plasmon resonance (LSPR) spectrum were obtained. Moreover, the single-molecule surface-enhanced Raman scattering (SERS) enhancement factor was found to vary from 1010 to 1013 depending on the excitation wavelengths. Our theoretical calculations suggest that these nanostructures can be used to fabricate efficient SERS-based biosensors for the detection of single molecules in real time and for predicting structural information of single molecules.  相似文献   

12.
Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.  相似文献   

13.
We presented a controlled particles‐in‐cavity (PIC) pattern for surface‐enhanced Raman scattering (SERS) detection. The periodic gold cavity array was fabricated by electrodeposition using highly ordered polystyrene spheres as a template. The as‐prepared gold cavities can be used as a SERS active substrate with significant spectral enhancement and reproducibility, which was evaluated by SERS signals using 4‐mercaptobenzoic acid (4‐MBA) as probe molecules. The surface of these gold cavities was further functionalized with cetyltrimethylammonium bromide molecules, which may immobilize the 4‐MBA‐modified silver nanoparticles in the gold cavity to form a PIC structure via the electrostatic interaction. We have demonstrated that there exists a pH window for the immobilization of the nanoparticles inside cavities. Therefore, the silver nanoparticles can be selectively immobilized into the functionalized gold cavities under the optimized pH value of the media. Further enhancement of the Raman scattering of the labeled molecules can be achieved due to the interconnection between the silver nanoparticles and gold cavity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We present experimental results of the time‐dependent Raman signal response of fluoranthene adsorbed on a naturally grown Ag nanoparticle ensemble, which serves as surface enhanced Raman scattering (SERS) substrate. In addition, SERS characteristics such as the concentration‐dependent calibration curves and the limit of detection (LOD) for fluoranthene in distilled water will be shown. The SERS substrate was prepared by Volmer–Weber growth under ultrahigh vacuum condition and exhibits a plasmon resonance wavelength at 491 nm. For the measurement of SERS signal response and SERS/shifted excitation Raman difference spectroscopy spectra of fluoranthene in water, experimental Raman setup containing a microsystem light source with two emission wavelengths (487.61 nm and 487.91 nm) was used. We experimentally demonstrate that the maximum SERS intensity is achieved 9 min after changing the analyte concentration from 0 nmol/l to 600 nmol/l. This response time is explained by a time‐dependent adsorption of the probe molecules onto the nanoparticles. The LOD for fluoranthene in water was evaluated applying shifted excitation Raman difference spectroscopy (SERDS) at different molecule concentrations. For SERDS, two emission wavelengths of a prototype microsystem light source have been used for Raman excitation. The experimental results reveal that the LOD for the probe molecules is very low. Experimentally, we have detected a fluoranthene concentration of only 4 nmol/l, which is very close to our estimated LOD of 2 nmol/l. Thus, the presented Raman setup, with a SERS substrate, whose plasmon resonance coincides with the excitation wavelength for SERS measurements, is well suited for in‐situ trace detection of pollutant chemicals in water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The detection of molecular biomarkers of various diseases in biologic fluids is of paramount interest in the field of biomedicine. In this work we demonstrate a direct and reliable identification of urea metabolic by-product in two particular biological fluids, namely, tears and fingerprints, by surface-enhanced Raman scattering (SERS) using gold colloidal particulate films as active plasmonic substrates. The SERS analysis of urea in tears and fingerprint samples produced in the secretions of the sebaceous and eccrine glands, respectively, was directly correlated with SERS analysis of urea in urine samples collected from the same volunteer. We demonstrate a high level of sensitivity and reliability, which would allow this method to be extended for monitoring other biomarkers present in these special biologic fluids as proteins and metabolites. Additionally, the SERS analysis is far less invasive than any other conventional analysis, such as the blood urea nitrogen test, which requires blood samples.  相似文献   

16.
Abstract

Surface-enhanced Raman scattering (SERS) has attracted great interest due to its remarkable enhancement, excellent sensitivity, and the “fingerprinting” ability to produce distinct spectra for detecting various molecules. Noble metal nanomaterials have usually been employed as SERS-active substrates because of their strong SERS enhancement originated from their unique surface plasmon resonance (SPR) properties. Because the SPR property depends on metal material's size, shape, morphology, arrangement, and dielectric environment around metal nanostructures, the key to wider applications of SERS technique is to develop plasmon-resonant structures with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. This review presents a general view on the theory background of SERS effect and several basic concepts and focuses on recent progress in engineering metallic nanostructures with various morphologies using versatile methods for improving SERS properties. Their potential applications in the field of chemical detection and biological sensing are overviewed.  相似文献   

17.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We report the surface-enhanced Raman (SERS) spectra of morphine in silver colloid, and study the silver colloid enhanced effects on the Raman scattering of morphine. The Raman bands of morphine are assigned to certain molecule vibrations. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the ag- gregation of the colloidal silver particles. The potential applications of SERS in quantitative measurement of the morphine samples are demonstrated. By using a proper Raman band of morphine, the detection limit of morphine in silver sol is found to be 1.5 ng/ml. The result suggests that it is of great significance to use SERS in illicit drug morphine inspection.  相似文献   

19.
A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.  相似文献   

20.
The possibility of using a new composite material based on porous silicon containing silver nanoparticles and synthesized by means of a unique implantation nanotechnology as an optically sensitive material in biological and chemical sensors is tested experimentally. It is demonstrated that detection of small amounts of the studied organic substance (methyl orange dye) is possible due to the effect of surface-enhanced Raman scattering (SERS) from the molecules affected by the local electromagnetic field of the silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号