首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
Hall coefficient measurements for intermediate concentration n-type Ge were carried out at liquid helium temperatures. The measurements show that the Hall coefficient and mobility increase with decreasing temperature down to 1.7 K and with increasing magnetic field up to 25 KG. These behaviours are opposite to what was observed in low concentration samples. We conclude that the thermal activated localised hopping motion does not exist in our concentration level, 6 × 1016 cm?3, but rather the delocalised quasi-free carriers still dominate the overall conduction for temperature as low as 1.7 K. A model is suggested to explain the Hall mobility behaviour. The model based on the decrease of the dominant scattering mechanism, ionised impurity scattering in our case, as the temperature is lowered and when the magnetic field is increased. From the Hall coefficient behaviour at 4.2 and 1.7 K as well as the resistivity measurements, we found no effect of magnetic field on the unique activation energy existing in this concentration level.  相似文献   

2.
D Home  M D Srinivas 《Pramana》1990,35(3):303-315
We investigate the question of local causality at the statistical level in Einstein-Podolsky-Rosen (EPR) type situations, taking into account the most general class of measurements envisaged in quantum theory. The condition for local causality at the statistical level used in this paper pertains to the invariance of statistics of measurements on one sub-system with respect to the choice and type of measurements on its correlated partner in the EPR-type examples. Our analysis is based on a criterion for measurements performed on one of the EPR sub-systems, which is more general than the criterion used in the earlier treatments. We discuss both non-absorptive measurements (where the system is available for further observation after the measurement is performed) as well as absorptive measurements (where the system is absorbed in the process of a particular outcome being realized). We show that in the case of arbitrary non-absorptive measurements characterized by operationvalued measures, the requirement of local causality at the statistical level is satisfied and in the process we identify the key inputs in such a proof. We also obtain the specific conditions under which an absorptive measurement satisfies local causality at the statistical level.  相似文献   

3.
There exists a connection between the vectors of the Poincaré-sphere and the elements of the complex Hilbert space C2. This latter space is used to describe spin-1/2 measurements. We use this connection to study the intermediate cases of a more general spin-1/2 measurement model which has no representation in a Hilbert space. We construct the set of operators of this general model and investigate under which circumstances it is possible to define linear operators. Because no Hilbert space structure is possible for these intermediate cases, it can be expected that no linear operators are possible and it is shown that under very plausible assumptions this is indeed the case.  相似文献   

4.
We consider a stochastic model for the diffusion in a porous media. For a case where the average satisfies an anomalous diffusion equation, we investigate the behavior of the realizations around the mean value. The most relevant result of our work is that, although the concentration corresponding to each realization diffuses normally for large times, it experiences large deviations from the mean value during intermediate times. As a consequence, the experimental measurements will always depart from the average value of the realizations (with respect to the stochastic process) for unpredictable times.  相似文献   

5.
The three-box problem is analysed in terms of virtual pathways, interference between which is destroyed by a number of intermediate measurements. The Aharonov-Bergmann-Lebowitz (ABL) rule is shown to be a particular case of Feynman's recipe for assigning probabilities to exclusive alternatives. The ‘paradoxical’ features of the three box case arise in an attempt to attribute, in contradiction to the uncertainty principle, properties pertaining to different ensembles produced by different intermediate measurements to the same particle. The effect can be mimicked by a classical system, provided an observation is made to perturb the system in a non-local manner.  相似文献   

6.
Based on trajectory-dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these results for three different cases: (i) the system is evolving in isolation from its surroundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in contact with reservoir using quantum Crooks fluctuation theorem. In Case (iii), we build on the treatment carried out by H T Quan and H Dong [arXiv/cond-mat:0812.4955], where a quantum trajectory has been defined as a sequence of alternating work and heat steps. The obtained entropy production fluctuation theorems (FTs) retain the same form as in the classical case. The inequality of second law of thermodynamics gets modified in the presence of information. These FTs are robust against intermediate measurements of any observable performed with respect to von Neumann projective measurements as well as weak or positive operator-valued measurements.  相似文献   

7.
We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit--leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss in detail how the MPHT can be implemented experimentally in terms of a flux-controlled SQUID circuit.  相似文献   

8.
We adopt an operational approach to quantum mechanics in which a physical system is defined by the mathematical structure of its set of states and properties. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter which corresponds with the number N of possible outcomes in an experiment. In the case N=2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical, i.e. the experiments are deterministic and its set of properties is a Boolean lattice. For intermediate situations the change of state due to measurement is neither ‘maximal’ (i.e. quantum) nor ‘zero’ (i.e. classical). We show that two of the axioms used in Piron’s representation theorem for quantum mechanics are violated, namely the covering law and weak modularity. Next, we discuss a modified version of the model for which it is even impossible to define an orthocomplementation on the set of properties. Another interesting feature for the intermediate situations of this model is that the probability of a state transition in general not only depends on the two states involved, but also on the measurement context which induces the state transition.  相似文献   

9.
We propose a three-party scheme for quantum information splitting (QIS) of an arbitrary single-photon polarization state based on weak cross-Kerr nonlinearity combined with linear optics elements such as polarization beam splitters (PBSs) and half wave plates (HWPs). The scheme is generalized to the arbitrary-party case. With the help of quantum nondemolition (QND) measurements, our schemes can be accomplished in an almost deterministic way. The two schemes are feasible with the current technology.  相似文献   

10.
We propose a three-party scheme for quantum information splitting(QIS) of an arbitrary single-photon polarization state based on weak cross-Kerr nonlinearity combined with linear optics elements such as polarization beam splitters(PBSs) and half wave plates(HWPs). The scheme is generalized to the arbitrary-party case. With the help of quantum nondemolition(QND) measurements, our schemes can be accomplished in an almost deterministic way. The two schemes are feasible with the current technology.  相似文献   

11.
The success of the moving puncture method for the numerical simulation of black hole systems can be partially explained by the properties of stationary solutions of the 1 + log coordinate condition. We compute stationary 1 + log slices of the Schwarzschild spacetime in isotropic coordinates in order to investigate the coordinate singularity that the numerical methods have to handle at the puncture. We present an alternative integration method to obtain isotropic coordinates that simplifies numerical integration and that gives direct access to a local expansion in the isotropic radius near the puncture. Numerical results have shown that certain quantities are well approximated by a function linear in the isotropic radius near the puncture, while here we show that in some cases the isotropic radius appears with an exponent that is close to but unequal to one. This paper is dedicated to the memory of Jürgen Ehlers. I have known JE for a number of years, in particular during his time as founding director of the Albert Einstein Institute in Potsdam. JE was the mentor of my habilitation thesis in 1996, and I am deeply thankful for many insightful discussions. JE combined great breadth and physical intuition with sharp analytical thought. His example inspired me to look beyond the numerical methods and results of numerical relativity to the analytic foundations. For example, while at the AEI, S. Brandt and I introduced “puncture initial data” for the numerical construction of general multiple black hole spacetimes [3]. While the puncture construction starts with an analytic trick of the sort that numerical relativists may devise, it is fair to say that the keen interest in analytical relativity created by JE at the AEI induced us to push our analysis one step further. As a result [3] connects to [26] for an existence and uniqueness proof for such black hole initial data, using weighted Sobolev spaces (see also [4–6]). The present work and its predecessors [9–12] represent an example where numerical experiments led to the discovery of an analytic solution for the 1 + log gauge for the Schwarzschild solution, and the present result, although modest, is of the type which I believe JE would have appreciated.  相似文献   

12.

The usual no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a cloning to be on the two quantum states. Here, we investigate a relation between the no-cloning theorem and the projective measurement theory that the results of measurements are either + 1 or − 1. We introduce the Kochen-Specker (KS) theorem with the projective measurement theory. We result in the fact that the two quantum states under consideration cannot be orthogonal if we avoid the KS contradiction. Thus the no-cloning theorem implies that the two quantum states under consideration are identical in that case. It turns out that the KS theorem with the projective measurement theory says a new version of the no-cloning theorem. Next, we investigate a relation between the no-cloning theorem and the measurement theory based on the truth values that the results of measurements are either + 1 or 0. We return to the usual no-cloning theorem that the two quantum states are identical or orthogonal in the case.

  相似文献   

13.
We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process.  相似文献   

14.
Tests of local realism versus quantum mechanics based on Bell's inequality employ two entangled qubits. We investigate the general case of two entangled quantum systems defined in N-dimensional Hilbert spaces, or " quNits." Via a numerical linear optimization method we show that violations of local realism are stronger for two maximally entangled quNits ( 3相似文献   

15.
电子与类锂离子碰撞激发   总被引:5,自引:0,他引:5       下载免费PDF全文
李家明 《物理学报》1980,29(4):419-428
本文提出一种计算电子与离子碰撞激发截面的理论方法。同时,此方法也可作为一种检验和掌握电子碰撞激发数据的手段。在电子的低能区域,利用多通道量子数亏损理论,我们可从精确测得的能谱数据中推算出电子碰撞激发截面。在电子的高能区域,我们利用Bethe理论计算了电子碰撞激发截面。对中间能域,如果将截面的局部共振结构平均,则可以用内插法得到平均激发截面。比较可靠的电子与离子激发数据,对受控聚变的研究是有帮助的。本文以电子与类锂离子碰撞激发为实例说明所提出的理论方法。 关键词:  相似文献   

16.
《Physics letters. A》2006,353(4):345-348
Spin–flop structures are currently being developed for magnetic random access memory devices. We report simulation studies of this system. We found the switching involves an intermediate edge-pinned domain state, similar to that observed in the single layer case. This switching scenario is quite different from that based on the coherent rotation picture. A significant temperature dependence of the switching field is observed. Our result suggests that the interplane coupling and thus the switching field has to be above a finite threshold for the spin–flop switching to be better than conventional switching methods.  相似文献   

17.
We have studied the properties of the polarization P and of the spin-rotation parameter Q in the case of elastic proton-nucleus scattering at intermediate energies. In particular we have focused our attention on the possibility of using measurements of P and Q at low momentum transfer (below 2 fm−1) to extract information on the ratio of the imaginary to the real part of the spin-dependent nucleon-nucleon amplitude.  相似文献   

18.
The increasing importance of optical 3D measurement techniques and the growing number of available methods and systems require a fast and simple method to characterize the measurement accuracy. However, the conventional approach of comparing measured coordinates to known reference coordinates of a test target faces two major challenges: the precise fabrication of the target and - in case of pattern projecting systems - finding the position of the reference points in the obtained point cloud. The modulation transfer function (MTF) on the other hand is an established instrument to describe the resolution characteristics of 2D imaging systems. Here, the MTF concept is applied to two different topometric systems based on fringe and speckle pattern projection to obtain a 3D transfer function. We demonstrate that in the present case fringe projection provides typically 3.5 times the 3D resolution achieved with speckle pattern projection. By combining measurements of the 3D transfer function with 2D MTF measurements the dependency of 2D and 3D resolutions are characterized. We show that the method allows for a simple comparison of the 3D resolution of two 3D sensors using a low cost test target, which is easy to manufacture.  相似文献   

19.
In this review, we examine the current theoretical and experimental status of the chiral magnetic effect.We discuss possible future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We specifically investigate the case for colliding nuclear isobars(nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.  相似文献   

20.
A fundamental problem in Fourier transform NMR spectroscopy is the calculation of observed resonance amplitudes for a repetitively pulsed sample, as first analyzed by Ernst and Anderson in 1966. Applications include determination of spin-lattice relaxation times (T(1)'s) by progressive saturation and correction for partial saturation in order to determine the concentrations of the chemical constituents of a spectrum. Accordingly, the Ernst and Anderson formalism has been used in innumerable studies of chemical and, more recently, physiological systems. However, that formalism implicitly assumes that no chemical exchange occurs. Here, we present an analysis of N sites in an arbitrary chemical exchange network, explicitly focusing on the intermediate exchange rate regime in which the spin-lattice relaxation rates and the chemical exchange rates are comparable in magnitude. As a special case of particular importance, detailed results are provided for a system with three sites undergoing mutual exchange. Specific properties of the N-site network are then detailed. We find that (i) the Ernst and Anderson analysis describing the response of a system to repetitive pulsing is inapplicable to systems with chemical exchange and can result in large errors in T(1) and concentration measurements; (ii) T(1)'s for systems with arbitrary exchange networks may still be correctly determined from a one-pulse experiment using the Ernst formula, provided that a short interpulse delay time and a large flip angle are used; (iii) chemical concentrations for exchanging systems may be correctly determined from a one-pulse experiment either by using a short interpulse delay time with a large flip angle, as for measuring T(1)'s, and correcting for partial saturation by use of the Ernst formula, or directly by using a long interpulse delay time to avoid saturation; (iv) there is a significant signal-to-noise penalty for performing one-pulse experiments under conditions which permit accurate measurements of T(1)'s and chemical concentrations. The present results are analogous to but are much more general than those that we have previously derived for systems with two exchanging sites. These considerations have implications for the design and interpretation of one-pulse experiments for all systems exhibiting chemical exchange in the intermediate exchange regime, including virtually all physiologic samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号