首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吕庆荣  方庆清  刘艳美 《物理学报》2011,60(4):47501-047501
用乙二醇为溶剂,用三氯化铁、二氯化钴和醋酸铵为起始反应试剂,通过溶剂热反应首次合成了纳米结构CoxFe3-xO4多孔微球.用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征样品的结构和形貌,结果表明,所制备的单分散CoxFe3-xO4多孔微球为立方多晶结构,其直径约300 nm,是由约30 关键词xFe3-xO4')" href="#">CoxFe3-xO4 多孔微球 磁性 交换偏置效应  相似文献   

2.
Nanosized copper aluminate (CuAl2O4) spinel particles have been prepared by a precursor approach with the aid of ultrasound radiation. Mono-phasic copper aluminate with a crystallite diameter of 17 nm along the (3 1 1) plane was formed when the products were synthesized using Cu(NO3)2·6H2O and Al(NO3)3·9H2O as starting materials, with urea as a precipitation agent at a concentration of 9 M. The reaction was carried out under ultrasound irradiation at 80 °C for 4 h and a calcination temperature of 900 °C for 6 h. The synthesized copper aluminate particles and the effect of different processing conditions such as the copper source, precipitation agents, sonochemical reaction time, calcination temperature and time were analyzed and characterized by the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transformation infrared spectroscopy (FT–IR).  相似文献   

3.
Plate-like Co nanoparticles with different sizes were synthesized by solution reduction process. The size of Co nanoplatelets can be tuned by varying the concentration of CoCl2·6H2O and the dosage of N2H4·2H2O. The Co nanoplatelets with the different size all exist in both fcc and hcp crystal structures. The normal direction of the nanoplatelets is perpendicular to the (002) planes of hcp phase or to the (111) planes of fcc phase. The saturation magnetizations of the samples are lower than the corresponding bulk value. The coercivities of the samples vary with the phase content and the particle size. The shape control mechanism was discussed.  相似文献   

4.
Nanoparticles of magnetite (Fe3O4) and hematite (α-Fe2O3) have been prepared by a simple microwave heating method using FeCl3, polyethylene glycol and N2H4·H2O. The amount of N2H4·H2O has an effect on the final phase of Fe3O4. The morphology of α-Fe2O3 was affected by the heating method. Crystalline α-Fe2O3 agglomerates were formed immediately at room temperature and most of these nanoparticles within agglomerates show the same orientation along [110] direction. After microwave heating, ellipsoidal α-Fe2O3 nanoparticles were formed following an oriented attachment mechanism. Both Fe3O4 and α-Fe2O3 nanoparticles exhibit a small hysteresis loop at room temperature.  相似文献   

5.
CoWO4 nanorods were synthesized at 453 K for 12 h by a hydrothermal technology from Na2WO4 · 2H2O and CoCl2 · 6H2O in the presence of sodium dodecyl sulfate (SDS). The as-synthesized CoWO4 nanorods were characterized by various techniques of X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray detector. Luminescent properties of the samples were measured at room temperature. The results showed that CoWO4 products are nanorods with diameters of about 20 nm, and lengths ranging between 100 and 200 nm. CoWO4 nanorods display a very strong PL peak at 453 nm with the excitation wavelength 300 nm. The possible formation mechanism of CoWO4 nanorods was suggested.  相似文献   

6.
Copper-doped Na21(SO4)7F6Cl phosphor was synthesized via the conventional wet chemical method. The synthesis was carried using CuCl2 and Cu (NO3)2·3H2O as dopants in two different steps successively. The formation and phase purity of the compound were revealed by the X-ray diffraction pattern. Functional groups of the prepared phosphor were observed in the FT–IR spectrum. The emission along with excitation spectra were followed to explore the luminescence attributes. Photoluminescence (PL) emission spectrum of the material synthesized using CuCl2 as the dopant was observed at 358?nm due to 3dl0?3d94s transitions when excited around 247?nm for various copper concentrations. Efficient blue emissions were obtained at peaks 423 and 469?nm for materials synthesized using Cu (NO3)2·3H2O as the dopant, when monitored at 357?nm excitation. The Commission Internationale de I’Eclairage chromaticity coordinates for different copper concentrations were calculated for the emission around 423?nm. TL glow curves of Na21(SO4)7F6Cl:Cu phosphor for different dopant concentrations, irradiated with 100?Gy gamma dose, were studied and hence the trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peak of Na21(SO4)7F6Cl:Cu phosphor were determined by using Chen’s Peak shape method. The results indicate that Na21(SO4)7F6Cl:Cu+ is a potential novel blue-emitting lamp phosphor and may be quite suitable for use in dosimetry of ionizing radiations.  相似文献   

7.
Nanocrystalline magnetic particles of CoxFe(3−x)O4, with x ranging from 0.79 to 1.15, has been synthesised by combustion reaction method using iron nitrate Fe(NO3)3.9H2O, cobalt nitrate Co(NO3)2·6H2O, and urea CO(NH2)2 as fuel without template and subsequent heat treatment. The process is quite simple and inexpensive since it does not involve intermediate decomposition and/or calcining steps. The maximum reaction temperature ranged from 850 to 1010 °C and combustion lasted less then 30 s for all systems. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of CoFe2O4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures phase purity. The average crystallite sizes determined from the prominent (3 1 1) peak of the diffraction using Scherre's equation and TEM micrographs consisted of ca. 27 nm in spherical morphology. FTIR spectra of the as-prepared material showed traces of organic and metallic salts byproducts. However, when the same material was washed with deionised water the byproducts were rinsed off, resulting in pure materials. Magnetic properties such as saturation magnetisation, remanence magnetisation and coercivity field measured at room temperature were 48 emu/g, 15 emu/g and 900 Oe, respectively.  相似文献   

8.
This article describes a method for preparing CuO nanoparticles in aqueous solution, and a demonstration of feasibility of metallic bonding with the use of the CuO particles. Colloid solution of CuO nanoparticles was prepared from Cu(NO3)2 aqueous solution (0.01 M) and NaOH aqueous solution (0.019 M) at 5–80 °C. Leaf-like aggregates with an average size of 567 nm composed of CuO nanoparticles were produced at 20 °C. The size of leaf-like aggregates decreased with increasing reaction temperature. Metallic copper discs could be bonded using the CuO nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas. A shear strength required for separating the bonded discs was 25.4 MPa for the CuO nanoparticles prepared at 20 °C, whose aggregates were the largest among the CuO particles examined. These results indicated that the formation of leaf-like aggregates of CuO nanoparticles led to efficient metallic bonding.  相似文献   

9.
We discuss possible directions for searching for prospective materials based on low-valency uranium (III–V) as detection media for hard electromagnetic radiation. We have studied the processes of formation of tetravalent and pentavalent uranium complexes from UO2(NO3)3·6H2O and UO2Cl2·H2O in DMF and with addition of CCl4, including when the systems are exposed to radiation in the visible range (400–450 nm). In the first case (UO2(NO3)3·6H2O solutions in DMF), upon irradiation we observe stable complexes of pentavalent uranium, and when CCl4 is added to the solution we observe complexes of tetravalent uranium. In the system UO2Cl2·3H2O in DMF, we do not observe the appearance of new forms of uranium; but when CCl4 is added, then complexes of tetravalent uranium are formed. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 184–187, March–April, 2007.  相似文献   

10.
The uptake of NO3 radicals on the surface of coatings prepared from the individual salts of NaI and NaBr dehydrates, hexahydrates of MgBr2, and MgCl2 and NaI · 2H2O/NaBr · 2H2O and MgBr2 · 6H2O/MgCl2 · 6H2O binary salts at various mole fractions of the doping salts, NaI · 2H2O and MgBr2 · 6H2O in the initial aqueous solution was measured in a flow reactor by kinetic mass spectrometry. The dependences of the rates of the consumption of the reactant and of the formation of the products on the mole fraction of the doping salt made it possible to determine a quantitative relationship between the surface density of the doping salt and its mole fraction in the initial solution. A joint analysis of these dependences and the previously obtained data led to the conclusion that the deliquescence of the studied individual salts produces the predominant effect on the ratio between their surface densities.  相似文献   

11.
Nickel hydroxides with hierarchical micro-nano structures are prepared by a facile homogeneous precipitation method with different nickel salts (Ni(NO3)2·6H2O, NiCl2·6H2O, and NiSO4·6H2O) as raw materials. The effect of nickel sources on the microstructure and lithium storage performance of the nickel hydroxides is studied. It is found that all the three prepared samples are α-nickel hydroxide. The nickel hydroxides synthesized with Ni(NO3)2·6H2 or NiCl2·6H2O show a similar particle size of 20–30 μm and are composed of very thin nano-sheets, while the nickel hydroxide synthesized with Ni(SO4)2·6H2O shows a larger particle size (30–50 μm) and consists of very thin nano-walls. When applied as anode materials for lithium-ion batteries (LIBs), the nickel hydroxide synthesized with NiSO4·6H2O exhibits the highest discharge capacity, but its cyclic stability is very poor. The nickel hydroxides synthesized with NiCl2·6H2O exhibit higher discharge capacity than the nickel hydroxides synthesized with Ni(NO3)2·6H2O, and both of them show much improved cyclic stability and rate capability as compared to the nickel hydroxide synthesized with Ni(SO4)2·6H2O. Moreover, pseudocapacitive behavior makes a great contribution to the electrochemical energy storage of the three samples. The discrepancies of lithium storage performance of the three samples are analyzed by ex-situ XRD, FT-IR, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) tests.  相似文献   

12.
CoMoS4 nanoflowers was synthesized by precipitation method from Na2MoO4, CoCl2 · 6H2O and CH3CSNH2 as starting materials. X-ray diffraction (XRD) analysis showed that the prepared samples is amorphous structure, X-ray photoelectron spectrometer data of Co, Mo and S in CoMoS4 revealed that the valences of the corresponding elements are almost +2, +6, and −2, respectively. Scanning electron microscope gave the result that the morphologies of the as-prepared powder is flower-like nanostructure. Moreover, electrochemical tests were also carried out, the initial discharge was 1547 mA h g−1, even after 20 cycles, it still remains 461 mA h g−1.  相似文献   

13.
New type photocatalytic materials of Zn2+–Ni2+–Fe3+–CO32?LDHs were prepared by complexing agent-assisted homogeneous precipitation technique and Zn(NO3)2·6H2O, Ni(NO3)·6H2O, Fe(NO3)3·9H2O used as raw materials in the case of molar ratio of Zn2+/Ni2+/Fe3+ = 1:6:2. Zn2+–Ni2+–Fe3+–CO32?LDHs having a specific surface area of 96.5 m2/g. The structure and catalytic properties of the material were systematically studied. The experimental results show that the Zn2+–Ni2+–Fe3+–CO32?LDHs has a higher adsorption performance and lower band gap which make it an excellent catalyst for reducing the degradation of the methyl orange. Study on the process of photocatalytic reaction shows that Methyl Orange was adsorbed to the layer of Zn2+–Ni2+–Fe3+–CO32?LDHs, and then it was photodecomposed to inorganic molecules and ions by Zn2+, Ni2+, and Fe3+ on the surface of Zn2+–Ni2+–Fe3+–CO32?LDHs.  相似文献   

14.
In the present work policrystals of α − Al2O3 doped with terbium were synthesized using the solvent evaporation method. The samples were prepared using Al(NO3)3·9H2O and Tb(NO3)3·5H2O reagents, with Tb concentrations between 1 and 5 mol% and thermally treated at high temperature above ∼1400 °C. X-ray diffraction measurements showed the α-phase formation of samples. TL glow curve presented an intense peak at ∼190 °C and two other with low intensity at 290 and 350 °C after gamma irradiation. The best doping concentration which presented high luminescence was the sample doped with 3 mol% of Tb. TL spectra and fluorescence measurements showed similar luminescence spectra with lines attribute to Tb3+ ions. A linear behavior to gamma dose between 1 and 20 Gy was observed in TL, using 190 °C peak as well as in OSL signal, this last carried out using 532 nm wavelength stimulation.  相似文献   

15.
Triboluminescence of Се2(SO4)3·8H2O and Tb2(SO4)3·8H2O crystals has been studied. For the first time spectral evidence for a contribution of light-emitting products OH? (283 and 290 nm maxima, 1–0 transition; 308.4 and 309.6 nm, 0–0 transition) and excited oxygen atom O? (777 nm, 3P5P—3S5S) produced via mechano-chemical decomposition of H2O and O2 molecules in the destruction of crystal hydrates of the salts to the gas-phase component of triboluminescence has been obtained.  相似文献   

16.
Pt/C, PtRu/C, PtBi/C, and PtRuBi/C electrocatalysts (20 wt.% metal loading) were prepared by borohydride reduction using H2PtCl6·6H2O, RuCl3·xH2O, and Bi(NO3)3·5H2O as metal sources and Vulcan XC 72 as support. The electrocatalysts were characterized by energy-dispersive X-ray analysis, X-ray diffraction, and thermogravimetric analysis. The electro-oxidation of ethanol was studied in sulfuric acid solution by cyclic voltammetry and chronoamperometry. The electrochemical studies showed that PtRuBi/C (50:40:10) electrocatalyst has superior performance for ethanol electro-oxidation at room temperature compared to the other electrocatalysts. Preliminary tests at 100 °C on a single direct ethanol fuel cell also confirm the results obtained by electrochemical techniques.  相似文献   

17.
Nanostructures of three new cobalt(II) complexes, (CoL1)·0.5DMF·1.5MeOH (1), [H2L1 = 5-(4-Carboxy phenyl azo) anthranilic acid], (Co(L2)2)·1.5MeOH (2), [HL2 = 5-(4-Carboxy phenyl azo) salicylaldehyde] and (Co(L3)2)·0.5 DMF·0.5MeOH (3), [HL3 = 1-(4-Carboxy phenyl azo) 2-naphtol], have been synthesized by the reaction of H2L1, HL2 and HL3 with Co(OAc)2·4H2O through sonochemical process. Calcination of the nano-sized compounds 13 yield Co3O4 nanoparticles at 450 °C under air atmosphere. These nanostructures were characterized by X-ray powder diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermal stability of compounds 13 was studied by thermogravimetric (TG) and differential thermal analyses (DTA).  相似文献   

18.
Dispersed nickel oxide nanoparticles were obtained by a simple and low-cost method using a mixture of gelatin as organic precursor and NiCl2 · 6H2O as Ni source. The average particle size was estimated from X-ray powder diffraction (XRPD) peaks using the Rietveld refinement. The values ranged from 3.2 to 79 nm. We observed that the particle size changes as a function of synthesis time, with a notable decrease after the addition of NaOH to the solution. Field emission scanning electron microscopy (FE-SEM) measurements show that particles have well defined shapes and are dispersed in an organic matrix. X-ray absorption near edge spectroscopy (XANES) shows also the formation of fcc NiO nanoparticles structures.  相似文献   

19.
Silica (SiO2)-coated ceria (CeO2) nanoparticles were prepared using water-in-oil microemulsion. Polyoxyethylene (15) cetylether and cyclohexane were used as a surfactant and organic solvent. SiO2-coated CeO2 nanoparticles were obtained by hydrolysis of metal alkoxide (tetraethylorthosilicate, TEOS) in the solution containing CeO2 precursor nanoparticles. The effects of CeO2 sources (Ce metal salt) and CeO2 particle-forming agents on the morphology of SiO2–CeO2 particles were investigated. Observation via transmission electron microscopy revealed that the type of particle-forming agent affected the nanoparticles' morphology and that CeO2 nanoparticles were spherically coated with SiO2 when using oxalic acid ((COOH)2) as a particle-forming agent of CeO2. Furthermore, the transmittance of the particles was high in the visible region (above 400 nm) and decreased in the ultraviolet region.  相似文献   

20.
Nanoscale yttrium–barium–copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/n-octane ratio affected the droplet size which was in the range of 3–8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30–100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号