首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
介绍了实验室研制的微波电子回旋共振(ECR)等离子体阴极电子束系统及初步研究结果,该系统包括微波ECR 等离子体源、电子束引出极、聚焦线圈等。通过测量水冷靶电流和靶上的束斑尺寸,实验研究了微波ECR 等离子体阴极电子束的流强、聚束性能等随电子束系统工作条件的变化。结果表明:微波输入功率越高、引出电压越高,引出电子束流强越大;工作气压对电子束流强的影响较复杂,随气压增加呈现出先降低后升高的特点;在7×10−4Pa 的极低气压下电子束流强可达75mA,引出电压9kV;能量利用率可达0.6;调整聚焦线圈的驱动电流,电子束的束斑直径从20mm 减小到13mm,电子束流强未有明显变化。  相似文献   

2.
The generation and control of microwave electron cyclotron resonance (ECR) plasma cathode electron beam is studied experimentally. A complete set of discharge, electron beam extraction, focusing and measuring system was set up. The characteristics and performance of microwave ECR plasmas as electron beam extraction source were studied by measuring the current of water cooling target and the beam spot size on the target. Experimental results indicated that both microwave input power and accelerating voltage are conducive to improving electron beam current. The influence of gas pressure on the electron beam current was complex. With the increase of gas pressure, the electron beam current is characterized by decreasing first and then increasing. The extracted electron current of microwave ECR plasma cathode can reach 75mA at gas pressure of 7×10−4Pa, and the energy of the electron beam can reach 9keV. The energy utilization can reach 0.6. By adjusting the current of the focusing coil, the diameter of electron beam spot is reduced from 20mm to 13mm and the electron beam current keeps the value unchanged.  相似文献   

3.
We report the generation of high-current-density (20 A/cm2) pulsed electron beams from high-voltage (48-100 kV) glow discharges using cathodes 7.5 cm in diameter. The pulse duration was determined by the energy of the pulse generator and varied between 0.2 ?s and several microseconds, depending on the discharge current. The largest electron beam current (900 A) was obtained with an oxidized aluminum cathode in a helium-oxygen atmosphere. An oxidized magnesium cathode produced similar results, and a molybdenum cathode operated at considerably lower currents. A small-diameter (<1 mm) well-collimated beam of energetic electrons of very high current density (>1 kA/cm2) was also observed to develop in the center of the discharge. Electrostatic probe measurements show that the negative glow plasma density and the electron beam current have a similar spatial distribution. Electron temperatures of 1-1.5 eV were measured at 7 cm from the cathode. The plasma density (8.5 · 1011 cm-3 at 450 A) was found to depend linearly on the discharge current. In discharges at high currents a denser and higher temperature plasma region was observed to develop at approximately 20 cm from the cathode. We have modeled the process of electron beam generation and predicted the energy distribution of the electron beam. More than 95 percent of the electron beam energy is calculated to be within 10 percent of that corresponding to the discharge voltage.  相似文献   

4.
Intense emission from a grid-stabilized plasma cathode based on a glow discharge with an expanded anode area is studied. In the electrode system of the ion source, the potential difference between a large-mesh grid electrode (a hole diameter of 4–6 mm) and cathode and anode plasma reaches 200 V and the glow discharge current is up to 1 A. The current distribution over the electrodes of the plasma cathode is taken, and the dependences of the electron extraction efficiency and electron-emitting-plasma potential on the gas pressure and discharge parameters are obtained. A relationship between the geometric parameters of the grid, cathode plasma potential, and efficiency of electron extraction from the plasma is derived. It is shown that stable intense emission from the plasma cathode can be provided in wide ranges of gas pressure and discharge current by varying the geometry and mesh size of the plasma cathode grid. Discharge contraction in the grid plane at elevated gas pressures is explained. It is assumed that the emitting plasma becomes inhomogeneous due to variation in the thickness of near-electrode layers in the holes of the grid, which makes the distribution of the emission current from the plasma more nonuniform.  相似文献   

5.
The plasma parameters and the emissivity of a ribbon electron beam source based on a discharge with an inhomogeneous extended hollow cathode are measured. A constriction in the cathode cavity increases the plasma density near the emitting area boundary, which adds to the electron current density in the beam. The reason for the above effect is the formation of the plasma density distribution nonuniform across the cavity with a maximum in the middle. This maximum is caused primarily by a plasma electron flow from the constriction, which is generated by the electric field and is directed toward a slit emission-extracting aperture.  相似文献   

6.
New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr , pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen’s curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam. The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation. The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.  相似文献   

7.
This paper presents the results of experimental studies on the homogeneity of a discharge in aNe−Xe−HCl gas mixture at a pressure of 2 atm in relation to the discharge current density, the cathode material (Al, Cu, Ti), and the mode of preconditioning of the cathode. With freshCu electrodes, a discharge of current density j∼50 A/cm2 with no cathode spot has been generated. Upon prolonged preconditioning ofAl andCu electrodes, a homogeneous discharge with j>100 A/cm2 and a high density of cathode spots has been realized. The results of numerical calculations based on a plasma model which allows for more than 300 plasma chemical reactions agree well with experiment. The plasma particle densities and the rates of death and birth of charged species are presented as functions of time. The physical processes occurring in the discharge plasma are analyzed. Institute of High-Current Electronics, Siberian Division of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 76–86, April, 2000.  相似文献   

8.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

9.
An analysis is made of some burning characteristics of a hollow-cathode glow discharge with a long tube (LD) used as the cathode. It is shown that, as in the case LD, the main factor imposing a lower limit on the range of operating voltages is the drift of fast electrons through the aperture in the cavity. Assuming that the electrons move along the cavity as a result of diffusion, it was possible to calculate the critical pressure at which the discharge can no longer burn and to determine the optimum ratio L/D for which the discharge can be sustained at the lowest voltage. The calculations showed satisfactory agreement with the experiment. Zh. Tekh. Fiz. 69, 36–39 (June 1999)  相似文献   

10.
Experimental data for the electrical and optical characteristics of a transverse slot-cathode nanosecond discharge are reported. The discharge is initiated in He at a discharge current of 1–500 A and a working gas pressure in a discharge chamber ranging from 102 to 104 Pa. It is shown that the cathode current density is much (several orders of magnitude) higher than the total current density of an equivalent abnormal discharge. The electrical characteristics of an open discharge and a discharge confined by dielectric walls are found to differ considerably. Electrons passing through the cathode fall region acquire a high energy (on the order of 1 keV) under the given conditions. The fast electron relaxation conditions correlate with the initiation and evolution of the discharge. A pattern of the discharge evolution is derived from experimental data. A way of estimating the coefficient of electron emission from the cathode plasma is suggested.  相似文献   

11.
This paper presents the experimental studies on self-breakdown-based single-gap plasma cathode electron (PCE) gun (5–20 kV/50–160 A) in argon, gas atmosphere and its performance evaluation based on particle-in-cell (PIC) simulation code ‘OOPIC-Pro’. The PCE-Gun works in conducting phase (low energy, high current) of pseudospark discharge. It produces intense electron beam, which can propagate more than 200 mm in the drift space region without external magnetic field. The profile of this beam in the drift space region at different breakdown conditions (i.e., gas pressures and applied voltages) has been studied and the experimental results are compared with simulated values. It is demonstrated that ~30% beam current is lost during the propagation possibly due to space charge neutralization and collisions with neutral particles and walls.  相似文献   

12.
The paper presents the results of research of the mass-charge state of an ion beam extracted from the plasma of a hollow-cathode non-self-sustained glow discharge with a time-of-flight spectrometer. The influence of the discharge parameters on the mass-charge state of the beam is discussed. It has been shown that a drop in discharge operating voltage allows a substantial decrease in the metal-ion fraction of the beam, and an increase in discharge current results in an increase in the average charge of gas ions and in an increase in the metal fraction of the beam. Institute of High Current Electronics. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 14–20, February, 2000.  相似文献   

13.
A crossed-field cold-hollow-cathode arc is stable at low working gas pressures of 10−2–10−1 Pa, magnetic-field-and gas-dependent arcing voltages of 20–50 V, and discharge currents of 20–200 A. This is because electrons come from a cathode spot produced on the inner cathode surface by a discharge over the dielectric surface. The magnetic field influences the arcing voltage and discharge current most significantly. When the plasma conductivity in the cathode region decreases in the electric field direction, the magnetic field increases, causing the discharge current to decline and the discharge voltage to rise. The discharge is quenched when a critical magnetic field depending on the type of gas is reached. Because of the absence of heated elements, the hollow cathode remains efficient for long when an arc is initiated in both inert and chemically active gases.  相似文献   

14.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

15.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

16.
A steady-state Penning ion source is studied experimentally. Depending on the geometric parameter l a (the anode length to diameter ratio) and pressure, maxima are observed in the discharge current and in the ion beam current extracted from an aperture at the center of the cathode. It is shown that at pressures of the order of 10−4 Torr, two maxima appear in these currents: one, for short discharge gaps with l a =1–1.5, corresponds to a diverging ion beam, and the other, for longer anodes with l a =4–5, to a collimated ion beam. At pressures of the order of 10−5 Torr, only one maximum appears in these currents, for short anodes l a =2–3 with a diverging ion beam. A physical explanation is proposed for these findings. Zh. Tekh. Fiz. 68, 29–32 (September 1998)  相似文献   

17.
A study is made of self-sustained glow discharges in transverse gas flows and jets. The distributions of the discharge current and voltage over the elements of a sectioned cathode array are measured along with the temperature of the cathode array. The limiting current and discharge voltage corresponding to the transition from a uniformly burning discharge to a contracted state are measured. Two-dimensional and one-dimensional systems of equations for the gas dynamics and vibrational kinetics are used for a numerical analysis of the experimental data, and the results are used to determine the character of the distribution of E/N in the discharge, where E is the electric field and N is the molecular density. The heat balance of the cathode array is calculated. A model is proposed for self-consistently calculating the parameters of the gas flow, the distribution of the current over the cathode array, and the discharge voltage, as well as the values of the ballast resistances. Zh. Tekh. Fiz. 69, 42–48 (November 1999)  相似文献   

18.
Results are presented from experimental studies of the formation of focused electron beams produced by extracting electrons from the plasma of a steady-state discharge with a hollow cathode in the forevacuum pressure range. Based on the measurements of the energy spectrum and diameter of the electron beam, as well as of the emission parameters of the plasma produced in the course of beam-gas interaction, a conclusion is drawn about the excitation of a beam-plasma discharge that deteriorates the beam focusing conditions. The threshold beam current density for the excitation of a beam-plasma discharge is found to increase with accelerating voltage and gas pressure.  相似文献   

19.
Transition of Discharge Mode of a Local Hollow Cathode Discharge   总被引:1,自引:0,他引:1       下载免费PDF全文
The discharge characteristics of hollow cathode discharge in argon in a cylindrical cavity are investigated experi- mentally. The voltage-current (V - I) characteristics and the light emission are measured. It is found that the discharge plasma is localized inside the hollow cavity, with an extensive Faraday dark space between the cathode and the anode. The discharge develops from predischarge to abnormal glow discharge, the hollow cathode effect (HCE) and a hybrid mode as the discharge current increases. The onset of the HCE is found for the first time by the transition from abnormal glow discharge together with a significant decrease in the slope of the V - I curve which shows a positive differential resistivity. The voltage increases proportionally with the current when the HCE is reached.  相似文献   

20.
We present an experimental study of discharge initiation in a three-electrode configuration consisting of a microhollow cathode discharge (MHCD) and a third planar electrode, biased positively and placed some distance away. This work is based on the microcathode sustained (MCS) configuration where the MHCD acts as a plasma cathode and enables the generation of a stable, non-equilibrium plasma at high pressure in the volume between the MHCD and the third electrode. Our experiments were carried out in two different set-ups, one using a MHCD as a cathode and another in an “equivalent” macrocell geometry, easier to implement and operating at lower pressure in which the same phenomena are observed. Consistent with previous modeling results, we find that the plasma column in the volume between the MHCD and the third electrode is characterized by a low reduced electric field, with values similar to those expected for a positive column. The ignition voltage of the plasma column depends on the voltage difference between the MHCD and the third electrode, the MHCD current, and the gas pressure and gap spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号