首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70–120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.  相似文献   

2.
We have studied frictional force between SiN tip and Si surface by using lateral force microscopy. The cantilever we have used has very low stiffness of 0.006 N/m, and the normal force acting on the surface was much lower than the attractive force such as van der Waals force. In this low normal force limit, it was found that the frictional force did not depend on the normal force. We suggest a calibration method to estimate the attractive force from the lateral force data in this limit. The estimated attractive force between Si sample and SiN tip with radius of 10 nm was 0.4 nN in flat region and 0.65 nN at the corner of a rectangular hole.  相似文献   

3.
English ivy (Hedera helix) is well known for its ability to climb onto and strongly adhere to a variety of solid substrates. It has been discovered that the ivy aerial rootlet secretes an adhesive composed of polysaccharide and spherical nanoparticles. This study aims to characterize the mechanical properties of the nanocomposite adhesive using atomic force microscopy (AFM). The adhesive was first imaged by AFM to visualize the nanocomposite. Mechanical properties were then determined at various time points, from secretion to hardening. The experimental results indicate that the ivy adhesive exhibited strong adhesion strength and high elasticity. There was a decrease in adhesive force over time, from 298 to 202 nN during the 24-h study. Accompanying with it were the limited changes in extension length and Young’s modulus. The limited curing process of the ivy adhesive helps fill gaps in the attaching surface, leading to more intimate contact and increased van der Waals interactions with the surface. However, study based on a mechanical model indicated that van der Waals force alone is not significant enough to account for all of the measured force. Other chemical interactions and cross linking likely contribute to the strong adhesion strength of ivy.  相似文献   

4.
Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) are found to promote cell adhesion, they are modified at numerous materials surface for medical applications such as drug delivery and regenerative medicine. Peptide-cell surface interactions play a key role in the above applications. In this letter, we study the adhesion force between the RGD-coated bead and Hela cell surface by optical tweezes. The adhesion is dominated by the binding of α5β1 and RGD-peptide with higher adhesion probability and stronger adhesion strength compared with the adhesion of bare bead and cell surface. The binding force for a single α5β1 -GRGDSP pair is determined to be 16.8 pN at a loading rate of 1.5 nN/s. The unstressed off-rate is 1.65 × 10-2s-1 and the distance of transition state for the rigid binding model is 3.0 nm.  相似文献   

5.
In this study, we suggest a nano-cutting system to determine the shear strength of the thin films using fracture mechanics analysis of the diamond blade. Based on Merchant's cutting model, we analyze the thin films cutting process with regard to shear angle and resistant forces as initiation of the yield in the chip to establish a direct correlation between the cutting forces and the shear strength. Validating the proposed method was conducted using homogenous polycarbonate disk showing similar shear strengths between different cutting directions. Next, we examined a thin copper electroplated film used in traces of printed circuit board. A thin copper film was examined and found the intrinsic shear strength (307.5 MPa) and adhesion force (44 N/m) between the film and substrate. The result was comparable with tensile strength values reported in the literatures. Finally, we used SEM to visually verify the feasibility of nano-cutting technique to determine thin film properties.  相似文献   

6.
刘婧  徐卫疆  胡文祥 《物理学报》2016,65(7):74301-074301
在用超声波谐振对粘接材料的粘接强度进行无损评估时, 不同模式对粘接强度的敏感程度受到众多因素和参数的影响, 对检测结果的可靠性至关重要. 基于多层介质中声传播和界面弱粘接边界条件的理论模型, 将一个上下非对称的金属-粘接剂-金属三层结构的平面波反射系数函数中的谐振模式看作是上下铝金属层各自的Lamb波频散模式通过夹心粘接剂层相互耦合后叠加组成. 改变影响结构粘接强度的因素, 即粘接剂的性能参数(声阻抗、密度、厚度)和界面切向劲度系数kt来分析三层结构谐振模式耦合方式的变化,得出结论: 粘接结构粘接性能的变化基本上不改变与被粘铝层相关的固有部分的Lamb波模式, 而它们的耦合模式则在谐振频率上产生平移并会与固有模式进行交换和替代; 不同参数的变化引起的模式演变有各自的规律, 大多可彼此区分.  相似文献   

7.
Magnetic resonance elastography (MRE) and ultrasound shear wave elastography (SWE) are imaging techniques to measure stiffness of the soft tissue using magnetic resonance imaging (MRI) and ultrasound images, respectively. The purpose of this study was to explore the feasibility of the MRE measurement to evaluate the change in supraspinatus (SSP) muscle stiffness before and after rotator cuff tear, and to compare the result with those of SWE. Six swine shoulders were used. The skin and subcutaneous fat were removed, and the stiffness value of the SSP muscle was measured by MRE and SWE. The MRE measurement was performed with 0.3 T open MRI and the vibration from a pneumatic driver system with active driver to a passive driver to create the shear wave in the tissue. The passive driver was placed on the center of the SSP muscle. The stiffness was estimated from the wave images using local frequency estimation methods. In the SWE measurement, the probe of the ultrasound was placed on the center of the SSP muscle. The shear wave propagation speed was measured at a depth of 1 cm from the surface, and the stiffness was calculated. After those measurements, the rotator cuff tendon was detached from the greater tuberosity, and MRE and SWE measurements were then performed in the same manner again. The differences in the stiffness values were compared between before and after the rotator cuff tendon tear on both the MRE and SWE measurements. The results indicated that stiffness values on MRE and SWE were 9.3 ± 1.8 and 10.0 ± 1.2 kPa respectively before the rotator cuff tear, and 7.3 ± 1.3 and 8.0 ± 0.8 kPa respectively after the tendon detachment. Stiffness values were significantly lower after the tendon detachment on both the MRE and SWE measurements (p < 0.05). Our results demonstrated that stiffness values of the SSP muscle on MRE and SWE were lower after rotator cuff detachment. From this result, MRE may be a feasible method for quantification of the change in rotator cuff muscle stiffness.  相似文献   

8.
To determine the effect of pulsed ultrasound (US) on radiation-induced cell killing, U937 and Molt-4 cell lines were exposed to 1.0 MHz US with 50% of duty factor at 0.3 W/cm2 and pulsed at 1 Hz immediately after exposure to X-rays at 0, 0.5, 2.5 and 5 Gy. The cells were assayed 24 h after the treatments. The result showed significant enhancement of cell killing in the combined treatments. However, the ratio of apoptotic cells induced either by X-rays or US alone did not significantly change. These findings suggest that pulsed US can enhance the anticancer effect of X-irradiation due to US streaming under non-inertial cavitational condition. This combined treatment can potentially enhance the therapeutic effect of radiation therapy.  相似文献   

9.
The competition between adhesion and tether formation in bound vesicles is investigated. A theoretical model is developed in which tethers are induced by the application of a pulling force to the top of a strongly adhered vesicle. A critical onset force is identified where the tether spontaneously appears as part of a first order shape transition. Further growth of the tether initiates a detachment process that culminates in a continuous unbinding of the vesicle at a finite detachment force. Both critical forces, as well as all shape parameters, are calculated as a function of the reduced volume and the strength of adhesive potential.  相似文献   

10.
We report on the joining of transparent thermoplastic polymers using infrared femtosecond laser pulses. Due to nonlinear absorption, the developed micro-welding process for cyclo-olefin copolymers does not require any intermediate absorbing layers or any surface pre-processing of the welding partners. In view of an optimized and stable micro-welding process, the influence of the welding speed and focal position on both, the quality and shear force strength are investigated. We highlight that welding seam widths of down to 65 µm are feasible for welding speeds of up to 75 mm/s. However, a variation of the welding speed affects the required focal position for a successful joining process. The shear force strength of the welding seam is determined to 37 MPa, which corresponds to 64% of the shear strength of the bulk material and is not affected by the welding speed.  相似文献   

11.
《Composite Interfaces》2013,20(1):19-40
In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.  相似文献   

12.
《Journal of Electrostatics》2005,63(6-10):687-692
The adhesion of ∼10 μm charged toner particles is of considerable importance in the electrophotographic process for copying or printing documents. If the non-electrostatic short-range adhesion force is reduced with nanoparticle surface additives, the toner adhesion is dominated by an electrostatic force. However, the measured adhesion of triboelectrically charged toner is greater than the prediction of an electrostatic image force model that assumes a uniform surface charge distribution. The enhanced electrostatic adhesion of triboelectrically charged toner is attributed to a non-uniform surface charge distribution. To provide support for this interpretation, the adhesion of ion-charged toner is of interest since a more uniform surface charge distribution is expected. Electric field detachment measurements on ion-charged toner for different charge levels show that the adhesion of ion-charged toner is indeed less than that of triboelectrically charged toner.  相似文献   

13.
Suspension culture is an essential large-scale cell culture technique for biopharmaceutical development and regenerative medicine. To transition from monolayer culture on the culture surface of a flask to suspension culture in a bioreactor, a pre-specified cell number must first be reached. During this period of preparation for suspension culture, static suspension culture in a flask is generally performed because the medium volume is not large enough to use a paddle to circulate the medium. However, drawbacks to this static method include cell sedimentation, leading to high cell density near the bottom and resulting in oxygen and nutrient deficiencies. Here, we propose a suspension culture method with acoustic streaming induced by ultrasonic waves in a T-flask to create a more homogeneous distribution of oxygen, nutrients, and waste products during the preparation period preceding large-scale suspension culture in a bioreactor. To demonstrate the performance of the ultrasonic method, Chinese hamster ovary cells were cultured for 72 h. Results showed that, on average, the cell proliferation was improved by 40% compared with the static method. Thus, the culture time required to achieve a 1000-fold increase could be reduced by 32 h (a 14% reduction) compared with the static method. Furthermore, the ultrasonic irradiation did not compromise the metabolic activity of the cells cultured using the ultrasonic method. These results demonstrate the effectiveness of the ultrasonic method for accelerating the transition to large-scale suspension culture.  相似文献   

14.
The temperature-dependent mechanical properties of polyethylene terephthalate (PET) polymers are investigated using force-distance curves, adhesion force, and atomic force microscope (AFM) nanolithography combined the heating techniques. The results show that the width of grooves on the polymers at 20-60 °C were in the range of 14-363 nm. The wear depth of the polymers increased with increasing heating temperature. A volume of 251.85-2422.66 μm(3) at a load of 30-50 nN with heating to 30-60 °C was removed, as compared to that of 26.60-70.30 μm(3) obtained at room temperature. The contact forces of PET started increasing at 9 nN, whereas the size of the holes was average at a pressure. The results may be of importance in explaining the heating relationship among adhesion force, volume removal rate, and pressure.  相似文献   

15.
Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.  相似文献   

16.
《Ultrasonics》2013,53(1):249-254
It has recently been demonstrated that it was possible to individually trap 70 μm droplets flowing within a 500 μm wide microfluidic channel by a 24 MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments.In this paper, the acoustic trapping force (Ftrapping) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. Ftrapping is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18 MHz to 30 MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (Fmin,trapping) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (Vin) to the transducer. At PRF = 0.1 kHz and DTF = 30%, Fmin,trapping is increased from 2.2 nN for Vin = 22 Vpp to 3.8 nN for Vin = 54 Vpp. With a fixed Vin = 54 Vpp and DTF = 30%, Fmin,trapping can be varied from 3.8 nN at PRF = 0.1 kHz to 6.7 nN at PRF = 0.5 kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion.The stiffness k can be estimated through linear regression by measuring the trapping force (Ftrapping) corresponding to the displacement (x) of a droplet from the trap center. By plotting Ftrappingx curves for certain values of Vin (22/38/54 Vpp) at DTF = 10% and PRF = 0.1 kHz, k is measured to be 0.09, 0.14, and 0.20 nN/μm, respectively. With variable PRF from 0.1 to 0.5 kHz at Vin = 54 Vpp, k is increased from 0.20 to 0.42 nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger Ftrapping) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer’s excitation parameters.  相似文献   

17.
We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force application revealed pronounced kinetic effects. The dependence of the detachment forces on the loading rate was well described by a power law (exponent approximately 0.4), in agreement with recent theoretical work.  相似文献   

18.
In many experimental situations, the adhesion of cells to solid substrates is due to non-covalent chemical bonds. It is the thesis of this paper that many phenomena occurring in cell detachment experiments, such as in I (E. Decavé, G. Garriver, Y. Brechet, B. Fourcade, F. Bruckert, Biophys. J. 82, 2383 (2002)), result from the static and dynamic properties of the adhesive bridges at the extreme margin of the cell. This region defines the adhesive belt where the distribution of connected bonds crosses over to zero where the membrane leaves the substrate. The theoretical model we introduce in this paper discusses the threshold force together with the peeling velocity in the same theoretical framework. In this one-dimensional model, the threshold force results from a non-homogeneous distribution of anchor proteins along the membrane so that the adhesive belt increases its capacity to resist motion with increasing the external force. Analyzing the kinetics of the the contact line motion, we derive the characteristic relationship speed versus external force and we describe the non-equilibrium state of the adhesive belt as a function of the speed. We discuss our model in view of the experimental results obtained with D. discoideum for hydrodynamic shear experiments. Our results could be also confronted to single-cell observations. Received 14 January 2002  相似文献   

19.
The cochlear outer hair cell is described by a cylindrical membrane model, characterized by area and shear moduli for a passive elastic element and an active tension element dependent on the membrane potential. In passive experiments, these moduli are determined from the pressure-strain relations. The area modulus obtained is 0.07 N m-1, similar to a lipid bilayer and the shear modulus is 0.007 N m-1. These moduli combined with previous active experiments show that the active tension is nearly isotropic and is about 1.6 x 10(-2) N m-1 V-1, resulting in a 0.5 nN/mV force per cell. This implies that the receptor potential for acoustical stimulation produces an active force comparable to the acoustic force applied to the basilar membrane per outer hair cell. This finding supports the hypothesis that the outer hair cell acts as feedback motor in the fine tuning mechanism of the mammalian ear.  相似文献   

20.
In order to evaluate the effect of ultrasound to chitinase from a molecular level, atomic force microscopy (AFM) was employed to investigate the interaction force of chitinase binding onto chitin surface. In the measurement of force-distance curve, a series of pull-off events were discovered using the immobilized AFM tips with chitinase either treated by ultrasound or not, whereas no interaction peak was observed by the AFM tips without chitinase, indicating that the obtained adhesion forces were coming from the binding functions between chitinase and chitin. Through the analysis of these force curves, at the loading velocity of 0.3 μm/s, the maximum binding force of the chitinase treated by ultrasound for 20 min onto chitin was measured to be 105.33 ± 23.51 pN, while the untreated onto chitin was 71.05 ± 12.73 pN, suggesting the stronger binding force between ultrasonic treated chitinase and chitin substrate. Therefore, AFM has provided a useful method to directly and quantitatively characterize the interactions between chitinase and chitin, and successfully proved that ultrasound could activate chitinase by enhancing the binding ability of chitinase onto chitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号