首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Gilmore formulation for bubble dynamics coupled with zeroth-order gas diffusion were used to investigate theoretically the cavitation activity produced by a modified XL-1 lithotripter [J. Acoust. Soc. Am. 105, 1997-2009 (1999)]. The model calculation confirms many of the basic features in bubble dynamics observed experimentally, in particular the strong secondary shock wave emission generated by in situ lithotripter shock wave-inertial microbubble interaction. In addition, shock wave-inertial microbubble interaction produced by a Dornier HM-3, the most commonly used clinical lithotripter, was evaluated. It was shown that the forced collapse of inertial microbubbles with strong secondary shock wave emission could be produced consistently, provided that an appropriate preceding shock wave and interpulse delay were used. Further, it was demonstrated that truncation of the tensile stress of the lithotripter shock wave could significantly reduce the large expansion of the bubble following shock wave-inertial microbubble interaction, which may alleviate the risk for vascular injury during shock wave exposure.  相似文献   

2.
Formation characteristic of microbubble in a T-junction microchannel in polydimethylsiloxane (PDMS) microfluidic chip is investigated. Microbubble formation experiments are carried out to investigate the effects of liquid flow rate, gas pressure and gas channel width on the detachment volume and formation time of microbubble. The growth process of the bubble is described by the form of force analysis, and the definition of the bubble detachment distance is introduced. The equivalent spherical theoretical model of bubble detachment diameter prediction is established, and the numerical solution of the model is obtained by the fourth-order Runge–Kutta method. The prediction results of theoretical model correlate well with the experimental data.  相似文献   

3.
张春兵  刘政  郭霞生  章东 《中国物理 B》2011,20(2):24301-024301
Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei.The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles.To achieve this goal,human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound.The hemolysis level was measured by a flow cytometry,and the cavitation dose was detected by a passive cavitation detecting system.The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure,which might give rise to the enhancement of hemolysis.Besides the experimental observations,the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated.The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation.  相似文献   

4.
When a stress wave generated by focusing a femtosecond laser is loaded on an animal cell adhered on a substrate, the cell is detached from the substrate. There are two possible mechanisms for the cell detachment: (a) The cell is detached from a scaffold coated on a glass plate, and (b) the cell is detached from the glass plate with the scaffold. In this work, we have studied the cell-detachment mechanism by visualizing the scaffold with a fluorescence probe of quantum dots. When the cell was detached from the substrate, fluorescence from the scaffold simultaneously disappeared from the glass plate, although the scaffold was not irradiated by the laser. This indicates that detachment due to the stress wave is attributed to mechanism (a). On the other hand, when the cell was detached from the substrate by a trypsin treatment, the fluorescence from the scaffold remained, suggesting mechanism (b). By comparing both results, it is considered that physiological damage of the cell membrane during the detachment process by femtosecond laser-induced stress wave is less than that due to the trypsin treatment.  相似文献   

5.
赵章风  张文俊  牛丽丽  孟龙  郑海荣 《物理学报》2018,67(19):194302-194302
微流体在生物医学、化学工程等领域应用广泛,并具有重大意义.在预处理中,液体混合也是关键且最为必要的前序.为了提高微流控腔道内液体混合的效率,本文提出基于单微泡振动的声学混合器,通过微泡共振,产生声微流,声微流形成的剪切力将在流体中产生微扰动,实现液体的混合.设计了底面直径为40μm的微孔结构,由于液体表面张力作用形成微泡,在共振频率为165 kHz的压电换能器激励下,气泡发生共振产生声微流.通过对压电换能器输入不同能量,获取混合液体的最优参数,可在37.5 ms内实现混合效果,混合均匀度达到92.7%.本文设计的单微泡振动混合器结构简单、混合效率高、混合时间短、输入能量低,可为生物化学等方面的研究提供强有力的技术支撑.  相似文献   

6.
We demonstrate the feasibility of covalently linking a single microbubble to a single, giant uni-lamellar vesicle (GUV). Such a combination of GUV plus microbubble might prove useful as a new drug delivery vehicle involving microbubble cavitation-induced sonoporation of the vesicle bilayer as a release mechanism. We therefore applied the well known methodology of passive cavitation detection to measure the influence of lipid shell chemistry on inertial cavitation thresholds for externally added microbubbles. We find that cavitation threshold changes significantly with changes in either molecular weight or mole fraction of poly(ethylene glycol), historically used to impede gas dissolution and microbubble coalescence. We attribute changes in cavitation threshold to changes in microbubble resonance frequency resulting from changes in microbubble shell bending elasticity. To further demonstrate the influence of shell chemistry on microbubble behavior, we describe how several common bubble phenomena - and some new - respond to changes in lipid chain length.  相似文献   

7.
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.  相似文献   

8.
钱梦騄  程茜 《应用声学》2008,27(6):419-426
理论上利用有耗散函数的Lagrange方程,建立了有壳微泡的R(t)运动方程,开展了自由空间中有壳微泡动力学特性的研究,表明微泡内外半径增量随声压的增大、超声频率的降低、初始内径的增大及壳厚的减薄而迅速增大。实验上,利用Mie散射技术在80°散射角和前向Mie散射检测新技术实验测量了微泡R(t)曲线;利用体视显微镜,实时观察了超声微泡对动物活体微血管损伤,开展了超声微泡生物效应的动物和细胞试验研究。结果表明:(1)超声作用下,微泡引起肿瘤中微血管壁周期性膨胀收缩而发生管壁破裂,形成血栓和微血管栓塞,抑制了肿瘤生长;(2)超声联合微泡可以破坏微血管内皮生长因子(VEGF)和肝癌细胞,可以减少肿瘤血管和癌细胞再生,因此,低频超声联合微泡技术是一种值得探索抑制肿瘤生长的新技术。  相似文献   

9.
Stride E  Saffari N 《Ultrasonics》2004,42(1-9):907-913
The development of coated microbubble ultrasound contrast agents for use in imaging applications and as carriers in drug and gene delivery applications has intensified the need for a clear understanding of their behaviour and potential bioeffects. Previous studies have focused on the risks posed by unencapsulated bubbles as representing the "worst case scenario". They have concluded that the risk of thermal damage should be minimal provided the threshold for inertial cavitation is not exceeded. However, these treatments have ignored the heating effects due to viscous dissipation in the coatings of contrast agent particles. Simulations indicate that the temperature rise due to this process may be sufficient to generate harmful bioeffects even under conventionally "safe" insonation conditions. The implications of these findings and strategies for addressing the risks posed by contrast agents are discussed.  相似文献   

10.
P Ciuti  G Iernetti  M.S Sagoo 《Ultrasonics》1980,18(3):111-114
Non-linearity effects on sound propagation induced by cavitation bubbles are investigated. The convergence of an acoustic wave due to the interaction with the microbubbles produced in the cavitation zone is shown experimentally. In these conditions the theoretical analysis shows that the self-focusing primarily depends on the effective microbubble volume fraction. This fraction turns out to be about 10?6 with a corresponding self-focusing distance of about 9 cm in the Fraunhofer region of a plane circular transducer.  相似文献   

11.
Photomechanical damage in absorbing regions or particles surrounded by a non-absorbing medium is investigated experimentally and theoretically. The damage mechanism is based on the generation of thermoelastic pressure by absorption of pulsed laser radiation under conditions of stress confinement. Principles of photoacoustic sound generation predict that the acoustic wave generated in a finite-size absorbing region must contain both compressive and tensile stresses. Time-resolved imaging experiments were performed to examine whether the tensile stress causes cavitation in absorbers of spherical or cylindrical shape. The samples were absorbing water droplets and gelatin cylinders suspended in oil. They were irradiated with 6-ns-long pulses from an optical parametric oscillator. Photoacoustic cavitation was observed near the center of the absorbers, even if the estimated temperature caused by absorption of the laser pulse did not exceed the boiling point. The experimental findings are supported by theoretical simulations that reveal strong tensile stress in the interior of the absorbers, near the center of symmetry. Tensile stress amplitudes depend on the shape of the absorber, the laser pulse duration, and the ratio of absorber size to optical absorption length. The photoacoustic damage mechanism has implications for the interaction of ns and sub-nslaser pulses with pigmented structures in biological tissue. Received: 9 October 1998 / Accepted: 5 January 1999 / Published online: 31 March 1999  相似文献   

12.
王莉  屠娟  郭霞生  许迪  章东 《中国物理 B》2014,23(12):124302-124302
Sonoporation mediated by microbubbles is being extensively studied as a promising technology to facilitate gene/drug delivery to cells. However, the theoretical study regarding the mechanisms involved in sonoporation is still in its infancy. Microstreaming generated by pulsating microbubble near the cell membrane is regarded as one of the most important mechanisms in the sonoporation process. Here, based on an encapsulated microbubble dynamic model with considering nonlinear rheological effects of both shell elasticity and viscosity, the microstreaming velocity field and shear stress generated by an oscillating microbubble near the cell membrane are theoretically simulated. Some factors that might affect the behaviors of microstreaming are thoroughly investigated, including the distance between the bubble center and cell membrane (d), shell elasticity (χ), and shell viscosity (κ). The results show that (i) the presence of cell membrane can result in asymmetric microstreaming velocity field, while the constrained effect of the membrane wall decays with increasing the bubble-cell distance; (ii) the bubble resonance frequency increases with the increase in d and χ, and the decrease in κ, although it is more dominated by the variation of shell elasticity; and (iii) the maximal microstreaming shear stress on the cell membrane increases rapidly with reducing the d, χ, and κ. The results suggest that microbubbles with softer and less viscous shell materials might be preferred to achieve more efficient sonoporation outcomes, and it is better to have bubbles located in the immediate vicinity of the cell membrane.  相似文献   

13.
Corrugated, hydrophilic particles with diameters between 30 and 150 microm are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from the cavities they themselves nucleate. Thus, in the research of cavitation nuclei the link is established between developed cavitation bubbles and their origin.  相似文献   

14.
Ultrasound is a very promising technology to mediated drug/gene transferring into cells. However the relations between cell experimental conditions and results have been still unknown. It seriously impeded the development of the technology. In the article, a transfer efficiency model for ultrasound mediated drug/gene transferring into cells in stable cavitation was constructed. To testify the model, the numerical results were compared with the cell experimental data from six literatures in the entirely different experimental conditions. The numerical results fit the cell experimental data well. Despite simplifications and limitations, the model for the first time established the relationship between the cell experimental results about transfer efficiency and the conditions including ultrasound, microbubble and cells in stable cavitation.  相似文献   

15.
Recent researches indicate that the initial event in the implantation of endovascular stents involves mechanical injury to the vessel wall. Confluent endothelialization of vascular grafts in vitro before implantation has been suggested as a way to reduce injury of the blood vessel. The purpose of this study is to establish a useful way to improve the adhesion of endothelial cells and accelerate endothelialization on the surface of endovascular stents by a novel rotational culture device. Numerical simulation was used to predict the shear stress on the surface of stents. The number of cellular adhesion was calculated by cell counting, the cell growth was observed by scanning electron microscope and fluorescence microscope. Numerical simulation results showed that the stents was exposed to shear stress of 2.66 × 10−3 to 8.88 × 10−2 Pa. Rotational culture of human umbilical vein endothelial cells could enhance the adhesion of cells and accelerate endothelialization on the surface of stents when the culture conditions for EC adhesion were intermediate rotation speed, higher dynamic incubation times, lower cell densities.  相似文献   

16.
A solution to the system of equations describing a cylindrical hybrid-aligned nematic liquid crystal is obtained. The rotational flow driven by vertical temperature gradient in such a cell is investigated theoretically. The cell is suggested as a new experimental setup for determining an additional relation required to measure the twelve thermomechanical coefficients. It is shown that the terms in the expressions for thermomechanical stress and heat flux obtained in [8] are equivalent to those originally proposed in [7].  相似文献   

17.
Ultrasound contrast agents are encapsulated microbubbles whose nonlinear acoustic scattering signatures have been the foundation of their use in diagnostic imaging. The coupled oscillations of microbubbles along their lines of center are investigated theoretically using radial equations in the monopole approximation and an energy balance, which is obtained for the system. Coupled microbubble pairs of different initial radii are investigated numerically relative to the normal modes for the linearized system. For microbubble pairs of different size bubbles driven below the mode of the smaller bubble and above the mode of the larger bubble, it is shown that oscillations of the smaller agent are affected substantially more by the coupling than those of the larger one. For separation distances of 10 and 500 microns, a difference of approximately 10 dB occurs in the second harmonic output of a 1.0-micron radius agent coupled with a 2.2-micron radius agent forced at 2.0 MHz and 0.3 MPa. The subharmonic spectral peak is shown to decrease approximately 19 dB for the coupling of 1.5- and 2.2-micron radius agents at 10- and 500-micron distances under the same acoustic forcing conditions. These coupling effects on the radiated pressure and its spectral power are highlighted for contrast agent imaging applications.  相似文献   

18.
于洁  郭霞生  屠娟  章东 《物理学报》2015,64(9):94306-094306
随着生命科学及现代医学的发展, 一体化无创精准诊疗已经日益成为人们关注的焦点问题, 而关于超声造影剂微泡的非线性效应的相关机理、动力学建模及其在超声医学领域中的应用研究也得到了极大的推动. 本文对下列课题进行了总结和讨论, 包括: 1)基于Mie散射技术和流式细胞仪对造影剂微泡参数进行定征的一体化解决方案; 2)通过对微泡包膜的黏弹特性进行非线性修正, 构建新的包膜微泡动力学模型; 3)探索造影剂惯性空化阈值与其包膜参数之间的相关性; 以及4)研究超声联合造影剂微泡促进基因/药物转染效率并有效降低其生物毒性的相关机理.  相似文献   

19.
The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole–dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号