首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel technique for treating grass carp by combining plasma functionalized liquids and ultrasound to inactivate bacteria was developed. The effects of the plasma functionalized liquids (PFL) including plasma functionalized water (PFW) and buffer (PFB) and their respective combination with ultrasound treatment (USPFW and USPFB) on the oxidative and physical qualities of grass carp were also investigated. Individual applications of PFW and PFB significantly reduced the populations of Escherichia coli and Shewanella putrefaciens in the range of 0.31–1.18 log CFU/g, compared with the control with a reduction of 0.18 log CFU/g, while combined treatments of USPFW and USPFB presented additional reductions of 0.05–0.65 log CFU/g, with potential synergy demonstrated for PFW and ultrasound. The treatment resulted in improved biomedical index and nutritional value of fatty acids and lipids, protein structural unfolding, increased lipid oxidation and protein degradation with values within the acceptable limits, and the combined treatment was more effective for retarding the hardness reduction in grass carp, while the colour change was also significantly affected, resulting in increased whiteness. The results indicated that the combined treatments may be a promising approach to improving the quality of seafood products.  相似文献   

2.
The effects of microwave, ultrasound and combined ultrasound-microwave (UM) treatment with different intensities on structural and hydrolysis properties of myofibrillar protein (MP) were investigated. Free radical scavenging ability, angiotensin-I-converting enzyme (ACE) inhibitory activity, and cellular antioxidant and anti-inflammatory abilities of the related bioactive peptides were also evaluated. Raman spectroscopic analysis indicated that MP molecule tended to unfold and stretch with increasing in β-turn and random coil content under mild microwave (100 W), ultrasound (100–200 W) and combined UM treatments. Meanwhile, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed these treatments could also improve the thermal stability against heat-induced denaturation and degeneration. The 200 W ultrasound treatment clearly increased MP solubility by disrupting the highly-ordered aggregates into smaller filament and fragment structures. The 300 W ultrasound coupled with 100 W microwave treatment further enhanced these effects. The resulting partially denatured structure induced by suitable ultrasound and combined UM treatments increased the susceptibility of MP to exogenous enzymes, thereby accelerating hydrolytic process and yielding a high peptide concentration in MP hydrolysates. MP peptides could effectively inhibit free radical and ACE activity, which also improved the ability of antioxidant defence system, and suppressed the production of proinflammatory cytokines in RAW 264.7 cells stimulated by H2O2. The combination of 100 W microwave and 300 W ultrasound treatment was optimal method for generating bioactive MP peptides with the strongest multi-activity effects against H2O2-induced cell damage.  相似文献   

3.
In this study, a soy protein isolate (SPI)-pectin (PC) complex was prepared, and the effects of different high intensity ultrasound (HIU) powers on the structure and solubility of the complex were studied. Fourier transform infrared (FTIR) spectroscopy analysis exhibited that with increasing HIU power, the α-helix content of the SPI in the complex was significantly reduced, and the random coil content increased; however, an opposite trend appeared after higher power treatments. Fluorescence spectra showed that HIU treatment increased the fluorescence intensity of the complex, and the surface hydrophobicity was increased. The trend of the protein structure studied by Raman spectroscopy was similar to that of FTIR and fluorescence spectroscopy. When the HIU treatment was performed for 15 min and at 450 W power, the particle size of the complex was 451.85 ± 2.17 nm, and the solubility was 89.04 ± 0.19 %, indicating that the HIU treatment caused the spatial conformation of the protein to loosen and improved the functional properties of the complex. Confocal laser scanning microscopy (CLSM) revealed that the complex after HIU treatment exhibited improved dispersibility in water and smaller particle size. Gel electrophoresis results indicated that HIU treatment did not affect the protein subunits of the complex. Therefore, the selection of a suitable HIU treatment power can effectively improve the structural properties and solubility of SPI in the complex, and promote the application of the SPI-PC complex in food processing and industries.  相似文献   

4.
Pb(Fe2/3W1/3)O3 (PFW) thin films were deposited on platinized silicon substrate by a chemical solution deposition technique. Room‐temperature X‐ray diffraction (XRD) revealed a pure cubic crystal structure of the investigated material. The microstructure indicated good homogeneity and density of the thin films. A Raman spectroscopic study was carried out on PFW to study the polar nano‐regions in the temperature range 85–300 K. The Raman spectra showed a change in the peak intensity and a shift towards the lower wavenumber side with temperature. The Raman spectra also revealed the transition from the relaxor to the paraelectric state of PFW. There was no evidence of a soft mode in the low‐temperature region, in contrast to the normal ferroelectric behavior. The polar nano‐regions tend to grow and join at low temperatures (∼85 K), which become smaller with increase in temperature. The presence of strong Raman spectra in the cubic phase of the material is due to the presence of distributed Fm3m(Z = 2) symmetry nano‐ordered regions in the Pm3m(Z = 1) cubic phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of a pH-shifting and ultrasound combined process on the functional properties and structure of pea protein isolate (PPI) was investigated. PPI dispersions were adjusted to pH 2, 4, 10, or 12, treated by power ultrasound for 5 min, and incubated for 1 h before the sample pH was brought back to neutral. After treatment, water solubility, protein aggregate size, solution turbidity, surface hydrophobicity (Ho), free sulfhydryl content (SH), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the soluble PPI were determined. pH-shifting at pH 12 and ultrasound combined treatment (pH12-US) significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. The pH12-US treated PPI had a solubility seven times higher than the control, reaching an average particle size of 45.2 nm. In addition, the pH12-US treated PPI significantly improved Ho due to disulfide bonds disruption, and produced more protein sub-units than other treatments. The soluble PPI obtained through this process may be a promising emulsifier for the enrichment of fat-soluble nutrients in foods.  相似文献   

6.
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic–microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic–microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic–microwave combination treatment was superior to that of either single treatment.  相似文献   

7.
Cellulose microparticles from ginkgo seed shells were treated by ultrasonic treatments within the selected output powders (150–600 W) and durations (10–60 min) to produce cellulose nanoparticles. The main aim of this study was to investigate effects of ultrasonic conditions on the interfacial property and emulsifying property of those cellulose nanoparticles. Compared to ultrasonic output powers, ultrasonic durations showed the greater influence on morphology and physical properties of cellulose nanoparticles. Atomic force microscopy revealed that noodle-like cellulose particles with 1100 nm in length gradually became the short rod-like nanoparticles with 300 nm in length with increasing of ultrasonic duration from 10 min to 60 min. Moreover, results of contact angles indicated that ultrasound could significantly improve hydrophobicity of cellulose nanoparticles. The interfacial shear rheology showed that although all cellulose nanoparticles exhibited the similar interface adsorption behavior which showed the initial lag-phase of adsorption, followed by the interface saturation, the time of this initial lag-phase was affected by ultrasonic conditions. The increase of ultrasonic duration and ultrasonic power could shorten the time of this initial lag-phase, suggesting the resulting cellulose nanoparticles easier adsorption at the O/W interface. It was probably attributed to its small size and high hydrophobicity induced by intense ultrasonic treatments. Meanwhile, the cellulose nanoparticles with small size and higher hydrophobicity exhibited the better emulsifying ability to stabilize oil-in-water emulsions due to the formation of the viscoelastic interfacial film. This study improved understanding about changes in interfacial and emulsifying properties of cellulose nanoparticles caused by ultrasonic treatments.  相似文献   

8.
High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.  相似文献   

9.
Rice selenium-containing peptide TSeMMM (T) with immunomodulatory functions was isolated from selenium-enriched rice protein hydrolysates. However, its biological activity is difficult to be protected in complex digestive environments. In this study, T was encapsulated within zein and gum arabian (GA) through ultrasound treatment to improve its bioactivity and bioavailability. The zein@T/GA nanoparticles were formed using ultrasonic treatment at 360 W for 5 min with a 59.9% T-encapsulation efficiency. In vitro digestion showed that the cumulative release rate of zein@T/GA nanoparticles reached a maximum of 80.69% after 6 h. In addition, short-term animal studies revealed that the nanoparticles had an effect on the levels of tissue glutathione and improved peptides’ oral bioavailability. Conclusively, these findings suggest that the ultrasonicated polysaccharide/protein system is suitable for encapsulating active small molecular peptides. Furthermore, it provides a novel foundation for studying the bioavailability of active substances in functional foods.  相似文献   

10.
Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, β-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.  相似文献   

11.
The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.  相似文献   

12.
Enhancement of signals in time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies is necessary to many biological applications. We have developed an efficient method of enhancing the signals of secondary ions from peptides using gold nanoparticles (AuNPs) attached to a well-controlled surface such as self-assembled monolayers (SAMs). AuNPs function as both signal enhancers and effective binding sites for peptides, which allow the high signal intensity from the peptides to produce well-contrasted ToF-SIMS images of peptides that are micropatterned on the surface of the AuNPs. For application, this AuNP-enhanced SIMS (NE-SIMS) provided the basis for the spectrum and images to assay protein kinases and their inhibitors. Phosphorylation efficiency and inhibitor effect were quantified by detecting mass change of the peptide substrates by kinase reaction. Maximum efficiency of phosphorylation was achieved from cysteine-tethered peptides with a spacer linker, indicating that accessibility of kinase was dependent on the surface orientation and length of the peptide substrate on the three-dimensional AuNPs. The activities of other enzymes such as phosphatase and protease could also be assayed using NE-SIMS. Our study shows that NE-SIMS can be applied as a useful tool for enzyme assay in biochip surfaces.  相似文献   

13.
Mean-field HP model, designability and alpha-helices in protein structures   总被引:3,自引:0,他引:3  
Analysis of the geometric properties of a mean-field HP model on a square lattice for protein structure shows that structures with a large number of switchbacks between surface and core sites are chosen favorably by peptides as unique ground states. Global comparison of model (binary) peptide sequences with concatenated (binary) protein sequences listed in the Protein Data Bank and the Dali Domain Dictionary indicates that the highest correlation occurs between model peptides choosing the favored structures and those portions of protein sequences containing alpha helices.  相似文献   

14.
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.  相似文献   

15.
The influence of high intensity ultrasound (HIUS) on physicochemical and functional properties of sunflower protein isolates was investigated. Protein solutions (10% w/v) were treated with ultrasound probe (20 kHz) and ultrasound bath (40 kHz) for 5, 10, 20 and 30 min. Thermal stability of protein isolates was reduced as indicated by differential scanning calorimetry. Minimum thermal stability was observed at 20 min of sonication and increased further with increase in treatment time indicating aggregation at prolonged sonication. SDS-PAGE profile of proteins showed a significant reduction in molecular weight. Further, surface hydrophobicity and sulfhydryl content increased after HIUS treatment indicating partial unfolding of proteins and reduction in the intermolecular interactions. The particle size analysis showed that HIUS treatment reduced the particle size. Less turbid solution were observed largely due to reduction in particle size. HIUS decreased the available lysine content in protein isolates. Solubility, emulsifying capacity, emulsion stability, foaming capacity, foam stability and oil binding capacity were improved significantly, while as, water binding capacity was decreased. The effect of HIUS on physicochemical and functional properties of sunflower protein isolates was more pronounced in probe sonication rather than bath sonication. Protein isolates with improved functional properties can be obtained using high intensity ultrasound technology.  相似文献   

16.
This study investigated effects of ultrasound on the contents of peptide and soluble protein, antioxidant activity, functionalities and structural characteristics of fermented soybean meal (FSBM) with Bacillus subtilis systematically. The results showed that there were significant effects of ultrasound treatments (frequency, treatment time and power density) on the contents of peptide and soluble protein (p < 0.05). Under the optimum ultrasound conditions (power density of 0.08 W/mL, frequency of 33 kHz and treatment time of 1 h) by single factor experiment, the contents of peptide and soluble protein increased by 31.27% and 18.79% compared to those of the control, respectively. Additionally, the in vitro antioxidant activity (•OH scavenging rate, Fe2+ chelating capacity and DPPH radical scavenging rate) and functional properties (emulsifying activity and emulsifying stability) of FSBM were found to be noticeably improved by ultrasound (p < 0.05). The fourier transform infrared (FTIR) spectroscopy revealed that ultrasound caused protein molecules to unfold with a decrease content of α-helix and β-turn and an increase in the proportion of β-sheet and random coil. Besides, atomic force microscope (AFM) results indicated that ultrasonication generally increased the surface roughness of protein and the protein sonicated with higher frequency (≥33 kHz) exhibited a greater height compared to lower frequency ultrasonication. Structure-activity relationship analysis illustrated that there was a good linear relationship between •OH scavenging rate and β-sheet/β-turn with Pearson’s correlation coefficient r of −0.86/0.90. Collectively, the selection of ultrasonic parameters is essential for the preparation of functional protein and bioactive peptide by enhancing fermentation of agroindustrial by-products.  相似文献   

17.
The denaturation and lower solubility of commercial potato proteins generally limited their industrial application. Effects of high-intensity ultrasound (HIU) (200, 400, and 600 W) and treatment time (10, 20, and 30 min) on the physicochemical and functional properties of insoluble potato protein isolates (ISPP) were investigated. The results revealed that HIU treatment induced the unfolding and breakdown of macromolecular aggregates of ISPP, resulting in the exposure of hydrophobic and R–SH groups, and reduction of the particle size. These active groups contributed to the formation of a dense and uniform gel network of ISPP gel and insoluble potato proteins/egg white protein (ISPP/EWP) hybrid gel. Furthermore, the increase of solubility and surface hydrophobicity and the decrease of particle size improved the emulsifying property of ISPP. However, excessive HIU treatment reduced the emulsification and gelling properties of the ISPP. Meanwhile, HIU treatment changes the secondary structure of ISPP. It could be speculated that the formation of a stable secondary structure of ISPP initiated by cavitation and shearing effect might play a dominant role on gel strengthens and firmness. Meanwhile, the decrease in relative content of β-turn had a positive effect on the formation of small particle to improve emulsifying property of ISPP.  相似文献   

18.
To improve the quality of cooked and frozen crayfish after repeated freeze–thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze–thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 μm2 and 113.73 μm2, and average diameter of the ice crystals was 5.83 μm and 8.14 μm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..  相似文献   

19.
Pea protein is a promising alternative to animal-based protein and the interest in its application in food industry has been rapidly growing. In this study, pea protein isolates (PPI) were used to form protein-based edible films and the effect of ultrasound treatment on the structure of PPI and the structural, optical, mechanical and physicochemical properties of PPI-films were investigated. Ultrasound induced unfolding of PPI and exposed interior hydrophobic groups to protein surface while both PPI dissociation and formation of large aggregates were observed, as confirmed by measuring intrinsic emission fluorescence, surface hydrophobicity, surface charge, and particle size distribution and polydispersity index, respectively. FE-SEM showed that ultrasound decreased the cracks and protein aggregates at the surface of PPI-film. The film structure was also investigated by FTIR, which showed peak shift in amide I and II region and noticeable difference of protein secondary structure as affected by ultrasound. As a result of such structural changes caused by ultrasound, the properties of PPI-films were improved. Results showed that ultrasound greatly improved the film transparency, significantly increased film tensile strength but not elongation at break, and decreased moisture content and water vapor permeability of the film. This study provided structural data as evidence for utilizing ultrasound technique to develop PPI-films with improved optical, mechanical and water barrier properties.  相似文献   

20.
Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号