首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of dual-frequency ultrasound treatment with different working modes on the lysinoalanine (LAL) formation and structural characterization of rice dreg protein isolates (RDPI) was studied during alkaline exaction processing. Ultrasonic notably decreased the LAL amount of RDPI and enhanced the protein dissolution rate. The LAL content of RDPI, especially sequential dual frequency 20/40 kHz, decreased by 12.02% (P < 0.05), compared to non-sonicated samples. Herein, the protein dissolution rate was higher. The changes in sulfhydryl groups was positively correlated with the LAL formation. The amino acids (AA) such as threonine (Thr), lysine (Lys), and arginine (Arg) were reduced, resulting in a decrease in LAL content following sonication. Besides, ultrasonication altered protein secondary structure by reducing random coil and β-sheet contents, while α-helix and β-turn contents increased. Alterations in the surface hydrophobicity, particle size, particle size distribution, and microstructure indicated more irregular fragment with microparticles of RDPI by sonochemical treatment. Thus, ultrasound treatment may be a new and efficacious process for controlling the LAL generation in prepared-protein food(s) during alkali extraction.  相似文献   

2.
The effect of ultrasound on the conformational and physicochemical properties of soy protein isolate hydrolysates (SPHs) was investigated. SPHs were prepared at hydrolysis times of 20 min, 60 min, and 180 min, then treated with ultrasound for 10 min, 20 min, and 30 min at a frequency of 20 kHz and output powers of 150 W and 450 W. The structural properties and antioxidant capacities of the aqueous layer of SPHs (ASPHs) after sonication were evaluated by Fourier-transform infrared spectroscopy (FTIR), intrinsic fluorescence, DPPH radical scavenging activity assays, and microscopy observations. Results obtained showed that ultrasound treatment significantly disrupted the peptide aggregates formed during protein hydrolysis. The protein solubility was significantly increased after sonication (by up to 18.33%), as did the percentage of proteins with MW < 1 kDa in ASPHs. The antioxidant capacity of ASPHs also increased, as measured by DPPH assay. FTIR analysis of ASPHs indicated that the protein secondary structures were different, with an increase in β-sheet and a decrease in α-helix and β-turn. Furthermore, the changes in fluorescence spectra of ASPHs showed the transition of protein tertiary structure with a greater exposure of Trp residues in the side chains. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations of the morphological structure of ASPHs further confirmed the significant effect of sonication on disrupting peptide aggregates. In conclusion, ultrasound can be used as an efficient treatment to promote the solubility of protein hydrolysates.  相似文献   

3.
In recent years, more and more attention had been paid to the combination of proteins and flavonoids, and several flavonoids had been reported to improve the physicochemical and emulsifying properties of proteins. This study investigated the effects of ultrasonic treatment (450 W for 10 min, 20 min, and 30 min) on the physicochemical properties, antioxidant activity, and emulsifying properties of soy protein isolate (SPI) -hawthorn flavonoids (HF) non-covalent complexes. The results showed that the addition of HF to SPI and 20 min of ultrasound could reduce α-helix and random coil, increase β-sheet and β-turn, and enhance fluorescence quenching. In addition, it decreased the particle size, zeta potential, surface hydrophobicity, and turbidity to 88.43 or 95.27 nm, −28.80 mV, 1250.42, and 0.23, respectively. The protein solubility, free sulfhydryl group, antioxidant activity, emulsifying activity index, and emulsifying stability index all increased to 73.93%, 15.07 μmol/g, 71.00 or 41.91%, 9.81 m2/g, and 67.71%, respectively. Moreover, high-density small and low-flocculation droplets were formed. Therefore, the combined ultrasound treatment and addition of HF to SPI is a more effective method for protein modification compared to ultrasound treatment alone. It provides a theoretical basis for protein processing and application in the future.  相似文献   

4.
Effect of ultrasonic power on the structure and functional properties of water-soluble protein extracted from defatted Moringa oleifera seed were explored. The results showed that ultrasonic treatment could reduce β-sheet and β-turn content of water-soluble protein from Moringa oleifera seed (MOWP) and increase the content of random coil and α-helix. Changes in intrinsic fluorescence spectra, surface hydrophobicity (H0) and thermal behaviors indicated that ultrasonic had significant effect on the tertiary structure of MOWP. The results of SEM and SDS-PAGE showed that the MOWP was aggregated but not significantly degraded by ultrasound. The solubility, foaming properties and emulsifying properties of MOWP increased firstly and then decreased with the increase of ultrasonic power. Ultrasonic treatment altered the functional properties of MOWP, which might be attributed to the exposure of hydrophilic group and the change of and secondary and tertiary structure.  相似文献   

5.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

6.
The β-lactoglobulin-chlorogenic acid (LG-CA) conjugate was explored to be formed through ultrasonication, redox-pair method and their combination, the ultrasonication used a probe ultrasonic machine with a 6 mm probe at 270 W, and the frequency was 20–25 kHz. The formation of the conjugate was confirmed by SDS-PAGE with a larger molecular weight. Besides, Fourier infrared spectroscopy (FTIR) and Circular dichroism (CD) indicated changes in the secondary structure of the LG-CA conjugate. The α-helix and β-sheet contents of LG decreased and the unordered content increased significantly after the formation of covalent complexes. In addition, both the ultrasonic treatment and its combination with redox-pair method could significantly improve the antioxidant properties of LG. The former increased to 23.16 μmol Trolox/g sample, the latter 82–106 μmol Trolox/g sample. Therefore, ultrasonication could be used both individually and in combination with the redox-pair method to produce LG-CA conjugates with stronger antioxidant activities.  相似文献   

7.
The effects of ultrasound pretreatment with different frequencies and working modes, including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU) and tri-frequency ultrasound (TFU), on the degree of hydrolysis (DH) of rice protein (RP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of RP hydrolysate were investigated. Ultraviolet–visible (UV) spectroscopy, fourier transform infrared (FTIR) spectroscopy, surface hydrophobicity and scanning electron microscopy (SEM) of RP pretreated with ultrasound were measured. The results showed that ultrasound pretreatment did not increase DH of RP significantly (p > 0.05). However, all the ultrasound pretreatment increased the ACE inhibitory activity of RP hydrolysate significantly (p < 0.05). The MFU of 20 kHz showed higher ACE inhibitory activity compared to that of other MFU. The ACE inhibitory activity of sequential DFU was higher than that of simultaneous with the same frequency combination. Sequential TFU of 20/35/50 kHz produced the highest increase in ACE inhibitory activity in contrast with other ultrasound frequencies and working modes. All the results under ultrasound pretreatment showed that ultrasound frequencies and working modes were of great effect on the ACE inhibitory activity of RP. The changes in UV–Vis spectra and surface hydrophobicity indicated the unfolding of protein and exposure of hydrophobic groups by ultrasound. The FTIR analysis showed that all the ultrasound pretreatment with different frequencies and working modes decreased α-helix, β-turn content and increased β-sheet, random coil content of RP. The SEM results indicated that ultrasound pretreatment resulted in the deformation of RP. In conclusion, the frequency selection of ultrasound pretreatment of RP is essential for the preparation of ACE inhibitory peptide.  相似文献   

8.
Oxidative attack leads to the oxidative aggregation and structural and functional feature weakening of soybean protein. We aimed to investigate the impact of ultrasonic treatment (UT) with different intensities on the structure, emulsifying features and interfacial features of oxidized soybean protein aggregates (OSPI). The results showed that oxidative treatment could disrupt the native soy protein (SPI) structure by promoting the formation of oxidized aggregates with β1-sheet structures through hydrophobic interactions. These changes led to a decrease in the solubility, emulsification ability and interfacial activity of soybean protein. After low-power ultrasound (100 W, 200 W) treatment, the relative contents of β1-sheets, β2-sheets, random coils, and disulfide bonds of the OSPI increased while the surface hydrophobicity, absolute ζ-potential value and free sulfhydryl content decreased. Moreover, protein aggregates with larger particle sizes and poor solubility were formed. The emulsions prepared using the OSPI showed bridging flocculation and decreased protein adsorption and interfacial tension. After applying medium-power ultrasound (300 W, 400 W, and 500 W) treatments, the OSPI solubility increased and particle size decreased. The α-helix and β-turn contents, surface hydrophobicity and absolute ζ-potential value increased, the structure unfolded, and the disulfide bond content decreased. These changes improved the emulsification activity and emulsion state of the OSPI and increased the protein adsorption capacity and interfacial tension of the emulsion. However, after a high-power ultrasound (600 W) treatment, the OSPI showed a tendency to reaggregate, which had a certain negative effect on the emulsification activity and interfacial activity. The results showed that UT at an appropriate power could depolymerize OSPI and improve the emulsification and interfacial activity of soybean protein.  相似文献   

9.
The effects of thermal processing (TP) and flat sweep frequency and pulsed ultrasound (FSFPU) treatment with different frequency modes on the activity, conformation and physicochemical properties of mushroom polyphenol oxidase (PPO) were investigated. The results showed that the relative enzymatic activity of PPO gradually decreased with increasing temperature and duration, and thermosonication decreased the PPO activity to a greater extent compared with thermal processing. FSFPU treatment with dual-frequency of 22/40 kHz mode showed the most significant effect. Circular dichroism (CD) showed that the content of α-helix and β-turn dropped, while that of β-sheet and random coil raised after FSFPU treatment. The intensity of endogenous fluorescence decreased, indicating that PPO protein unfolded and the tertiary structure was destroyed. The amount of free sulfhydryl, protein aggregation index, and turbidity all rose. Moreover, FSFPU treatment led to the aggregation of protein from the analysis of atomic force microscope (AFM). Conclusively, FSFPU can be used as an effective method to inhibit the activity of endogenous enzymes in food.  相似文献   

10.
This study aimed to investigate influence of ultrasonic treatment on physicochemical and antioxidant properties of mung bean protein hydrolysate (MPH). Physicochemical properties of MPH were evaluated by Tricine-SDS-PAGE, particle size distribution, fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy, among others. Radicals scavenging activities of ABTS, hydroxyl, superoxide anion, Fe2+ chelating ability and reducing power characterized antioxidant activities of MPH. MPH contained four bands of 25.6, 12.8, 10.6 and 4.9 kDa, in which 4.9 kDa was the most abundant. Ultrasonic treatment increased the contents of aromatic and hydrophobic amino acids in MPH. Ultrasonic treatment decreased the content of α-helix of MPH and increased β-sheet and β-turn compared to MPH. MPH-546 W (ultrasonic treatment 546 W, 20 min) had the lowest average particle size (290.13 nm), zeta potential (-36.37 mV) and surface hydrophobicity (367.95 A.U.). Antioxidant activities of ultrasonicated-MPH increased with the ultrasonic power, achieving the lowest IC50 (mg/mL) of 0.1087 (ABTS), 1.796 (hydroxyl), 1.003 (superoxide anion) and 0.185 (Fe2+ chelating ability) in 546 W power. These results indicated ultrasonic treatment would be a promising method to improve the antioxidant properties of MPH, which would broaden the application scope of MPH as bioactive components in the food industry.  相似文献   

11.
Ultrasound-assisted enzymolysis has been applied to improve conventional enzymolysis, while there are rare reports on the application of ultrasound to high-concentration feather protein enzymolysis. Therefore, the feasibility of dual-frequency slit ultrasound (DFSU) for enzymolysis of high-concentration hydrolyzed feather meal (HFM), as well as the biological activities and structural characteristics of hydrolysates were investigated. The single-factor test was used to optimize the ultrasonic processing parameters: substrate concentration, frequency mode, intermittent ratio, power density, and time. The results showed that protein recovery rate and conversion rate increased by 6.08% and 18.63% under the optimal conditions (200 g/L, 28/80 kHz, 5:2 s/s, 600 W/L, and 3 h) compared with conventional enzymolysis, respectively. The macromolecular proteins in hydrolysates were converted into micromolecular peptides (< 500 Da) when treated by DFSU, and antioxidant activity and angiotensin-I-converting enzyme (ACE) inhibitory activity of hydrolysates were increased. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images illustrated the microstructure changes of feather protein particles in the ultrasound-assisted enzymatic hydrolysates of HFM (UEH), including more porous, smaller, and more uniform. Additionally, the conformation of protein molecules was significantly affected (P < 0.05), including the increase in free sulfhydryl (SH), the decrease in disulfide bond (SS) and surface hydrophobicity (H0). Fourier transform infrared (FTIR) spectra analysis further showed that the secondary structure of feather proteins was modified with a reduction in α-helix, β-turn, and β-sheet, while an increase in random coil content was observed. These results indicated that DFSU could be a promising method to enhance high-concentration HFM for preparing peptide-rich hydrolysates with high antioxidant activity and ACE inhibitory activity.  相似文献   

12.
Effect of multi-frequency power ultrasound (MFPU) pretreatments on the degree of hydrolysis (DH) and mechanism of casein during alcalase enzymolysis was investigated. Results showed that MFPU pretreatment in tri-frequency 20/40/60 kHz mode significantly (p < 0.05) improved the DH value of casein. Variation of intrinsic fluorescence spectrum indicated the unfolding and degradation of casein occurred after MFPU pretreatment. Fourier transform infrared spectra showed that α-helix and β-sheet content of MFPU pretreated casein decreased, while β-turn and random coil content increased. Surface topography and nanostructures of caseins were found modified after MFPU pretreatments by the analysis of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM analysis also indicated that the enzymolysis residues of casein pretreated by MFPU were smaller than untreated samples. In conclusion, the MFPU can be used as an efficient pretreatment method to promote the enzymolysis of casein.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2099-2106
The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20 kHz) and high-frequency (850 kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50 W for 60 min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing.  相似文献   

14.
Plant-based proteins obtained from agricultural by-products have garnered growing interest in response to consumer awareness of health and environmental issues. This study aimed to improve the functionalities of the proteins recovered from black soybean Aquasoya (PBSA) by modifying their structure via ultrasonication. PBSA was ultrasonicated with a frequency of 40 kHz at 350 W for different time periods (0, 20, 40, and 60 min), and its structural characteristics, physicochemical properties, and functional properties were investigated. Ultrasonication left the primary structure intact but altered the secondary and tertiary structures of the PBSA; α-helix and β-sheet contents decreased, random coil contents increased, and buried non-polar amino acid residues were exposed. Moreover, ultrasound promoted an increase in free sulfhydryl content and a reduction in particle size. Consequently, functional properties, such as solubility, emulsion stability, and foaming performance were improved by modifying the structure and physicochemical properties of PBSA. This work demonstrates the potential of ultrasound, which is favorable for modifying the spatial conformation and related functionalities of proteins, thus meeting the needs of manufacturers to use function-enhanced proteins as food additives.  相似文献   

15.
In this work, the effect of dual-frequency ultrasound-assisted ionic liquids (ILs) pretreatment on the functional properties of soy protein isolate (SPI) hydrolysates was investigated. The degree of hydrolysis (DH) of SPI pretreated by ultrasound and [BMIM][PF6] increased by 12.53% as compared to control (P < 0.05). More peptides with low molecular weight were obtained, providing support for the changes in DH. The trichloroacetic acid-nitrogen soluble index presented an increase, suggesting a better protein hydrolysate property. The increase in the calcium-binding activity showed the ultrasound-assisted ILs pretreatment could potentially improve bone health. The foaming capacity and stability of SPI hydrolysates pretreated by ultrasound-assisted [BMIM][PF6] always increased remarkably as compared to ultrasound-assisted [BDMIM][Cl] pretreatment. However, the synergistic effect of ultrasound-assisted [BMIM][PF6] on the emulsifying activity and antioxidant activities (DPPH and hydroxyl radical scavenging activity) was not as ideal as ultrasound-assisted [BDMIM][Cl] pretreatment, which may be affected by the structure of peptide. In conclusion, these results indicated the combination of dual-frequency ultrasound and ionic liquids would be a promising method to improve the functional properties of SPI hydrolysates and broaden the application scope of compound modification in proteolysis industry.  相似文献   

16.
This study primarily explored the internal mechanism underlying the ultrasonication-induced release of antioxidant peptides. An oxhide gelatin solution was treated ultrasonically (power = 200, 300, and 400 W), followed by enzymatic hydrolysis and structural and morphological analysis. The results showed that ultrasonication increased not only the degree of hydrolysis (DH) and protein recovery rate of the oxhide gelatin but also the ABTS radical scavenging, DPPH radical scavenging, ferrous chelating, and ferric reducing activities of its hydrolysate. The oxhide gelatin hydrolysate treated with 300-W ultrasonication had the maximum antioxidant activities. Ultrasonication inhibited hydrogen bond formation, reduced the crosslinking between collagen molecules, transformed part of the folded structure into a helical structure, and lowered the thermal stability of collagen molecules. The micromorphological analysis revealed that ultrasonication caused the gelatin surface to become loose and develop cracks, and as the power of the ultrasonication increased, the repetition interval distance (dÅ) also increased. Moreover, ultrasonication improved the solubilization, surface hydrophobicity, and interface characteristics and increased the content of basic and aromatic amino acids in the hydrolysate. In conclusion, ultrasonication modifies the protein structure, which increases the enzyme’s accessibility to the peptide bonds and further enhances antioxidant peptide release. These findings provide new insights into the application of ultrasonication in the release of antioxidant peptides.  相似文献   

17.
The aim of this study was to investigate the effect of multi-frequency power ultrasound (sweeping frequency and pulsed ultrasound (SFPU) and sequential dual frequency ultrasound (SDFU)) on the enzymolysis of corn gluten meal (CGM) and on the structures of the major protein fractions (zein, glutelin) of CGM. The results showed that multi-frequency power ultrasound pretreatments improved significantly (P < 0.05) the degree of hydrolysis and conversion rate of CGM. The changes in UV–Vis spectra, fluorescence emission spectra, surface hydrophobicity (H0), and the content of SH and SS groups indicated unfolding of zein and glutelin by ultrasound. The circular dichroism analysis showed that both pretreatments decreased α-helix and increased β-sheet of glutelin. The SFPU pretreatment had little impact on the secondary structure of zein, while the SDFU increased the α-helix and decreased the β-sheet remarkably. Scanning electron microscope indicated that both pretreatments destroyed the microstructures of glutelin and CGM, reduced the particle size of zein despite that the SDFU induced aggregation was observed. In conclusion, multi-frequency power ultrasound pretreatment is an efficient method in protein proteolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein.  相似文献   

18.
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60–70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.  相似文献   

19.
The effects of microwave, ultrasound and combined ultrasound-microwave (UM) treatment with different intensities on structural and hydrolysis properties of myofibrillar protein (MP) were investigated. Free radical scavenging ability, angiotensin-I-converting enzyme (ACE) inhibitory activity, and cellular antioxidant and anti-inflammatory abilities of the related bioactive peptides were also evaluated. Raman spectroscopic analysis indicated that MP molecule tended to unfold and stretch with increasing in β-turn and random coil content under mild microwave (100 W), ultrasound (100–200 W) and combined UM treatments. Meanwhile, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed these treatments could also improve the thermal stability against heat-induced denaturation and degeneration. The 200 W ultrasound treatment clearly increased MP solubility by disrupting the highly-ordered aggregates into smaller filament and fragment structures. The 300 W ultrasound coupled with 100 W microwave treatment further enhanced these effects. The resulting partially denatured structure induced by suitable ultrasound and combined UM treatments increased the susceptibility of MP to exogenous enzymes, thereby accelerating hydrolytic process and yielding a high peptide concentration in MP hydrolysates. MP peptides could effectively inhibit free radical and ACE activity, which also improved the ability of antioxidant defence system, and suppressed the production of proinflammatory cytokines in RAW 264.7 cells stimulated by H2O2. The combination of 100 W microwave and 300 W ultrasound treatment was optimal method for generating bioactive MP peptides with the strongest multi-activity effects against H2O2-induced cell damage.  相似文献   

20.
Harmful algal blooms pose a potential threat to the safety of drinking water sources. Ultrasound is an effective method for algae removal. However, this method can lead to the release of algal organic matter and the effects and toxic mechanisms of ultrasound on Anabaena are still poorly understood. The destruction mechanism of Anabaena flos-aquae cells under different ultrasonic conditions, the safety of intracellular organic matter (IOM) release to water and the enhanced coagulation efficiency of ultrasound were studied. Results showed that high-frequency ultrasound was effective in breaking down algae cells. After 10 min ultrasonication at 20 kHz, 5 min at 740 kHz and 1 min at 1120 kHz, the algae cells were inactivated and algae growth was halted. Ultrasound radiation can lead to the release of IOM, primarily chlorophyll a and phycocyanin, followed by some tryptophan and humic substances, polysaccharides, and proteins. The sonicated ribosomes were considerably reduced, and the antioxidant system of cells was also damaged to some extent. The coagulation effect of algae cells was substantially improved after ultrasonication. Thus, the safety of algae cell removal could be improved by controlling the changes in physiological structure and IOM release of algae cells by adjusting the ultrasound parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号