首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   

2.
The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC–10Co–4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide–binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products.  相似文献   

3.
Wear processes are always present in components exposed to different work situations. Hydraulic turbines in electric power generation and ship propellers are good examples of components subject to wear and corrosion. One way to protect these components, for example, is the deposition of coatings by thermal spray processes. Indeed, there are several wear or corrosion mechanisms acting simultaneously, and the validation of the mechanisms separately, is not the best way to select the better material. When materials have passivation as protective mechanism against corrosion, the mass loss due erosion can affect the materials selection. This paper study the combined effect of the corrosion on the cavitation mass loss, as well as, the cavitation mass loss influence on the corrosion properties of a chromium carbide Cr3C2-25NiCr coating. Despite of the modification of the erosion mechanism on the cavitated samples under 3,5% NaCl solution, the volume loss did not show any significant alteration. Cavitation mass loss increase the corrosion process, reducing significantly the corrosion potential and raising the corrosion current. It was observed that the cavitation of the Cr3C2-25NiCr HVOF coating influences much more the corrosion kinetics, than the corrosion affects the cavitation resistance.  相似文献   

4.
Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy   总被引:3,自引:0,他引:3  
The resistance to wear and corrosion of AZ91HP Mg alloy was improved by laser cladding Al-Cu alloy. It was found that the clad layer was characterized by AlCu4 and Mg17Al12 grains embedded in a AlMg matrix. The bonding zone exhibited a white-light planar crystal band with thickness of 10-13 μm. The heat-affected zone formed a eutectic structure due to the Mg diffusion. The microhardness and wear resistance of the coating were improved due to the formation of the hard phases AlCu4 and Mg17Al12. Owing to the formation of dense Al2O3 oxide film, the coating exhibited better corrosion resistance in 3.5 wt.% NaCl solution.  相似文献   

5.
The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1 M H2SO4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed.  相似文献   

6.
The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 °C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.  相似文献   

7.
Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al0.1CoCrFeNi HEA in two different media: distilled water with and without 3.5 wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al0.1CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA.  相似文献   

8.
The effect of compressive stress on cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy was investigated, and the results showed that the alloy exhibited selective phase corrosion of eutectoid “α + κiii” and its destruction was aggravated with more cavitation mass loss up to 1.74 times of the specimen without stress. It was mainly owing to the enhanced corrosion-induced erosion caused by compressive stress, which led to lattice distortion of the alloy and the resulting accelerated selective phase corrosion with increasing surface roughness, and then intensified the synergistic effect of electrochemical corrosion and mechanical erosion.  相似文献   

9.
Two kinds of Ti-alloys, i.e., TiMo and TiNb alloys are manufactured in this paper, and their ultrasonic cavitation erosion behaviors in 0.1 M H2SO4 solution are evaluated by the mean depth erosion (MDE), SEM and white light photograph. The results show that MDE of TiMo and TiNb alloys obviously increase with increasing the cavitation erosion time, however, they evidently decrease with the increment of Mo or Nb content at each fixed cavitation erosion time, and even some large blank areas (uneroded areas) still exist on the sample surface after ultrasonic cavitation erosion for 2 h in the case of Ti10Mo and Ti20Nb samples, implying the enhanced anti-cavitation erosion property of Ti-alloy by adding Mo or Nb element. The MDE of Ti10Mo or Ti20Nb sample is lower than that of TC4 sample in the case of each cavitation erosion time, indicating the better cavitation erosion resistance of of Ti10Mo or Ti20Nb sample. The influences of Mo and Nb on the passivity of TiMo and TiNb alloys during the ultrasonic cavitation erosion are detected by potentiodynamic curves. The results display that Ti, TC4, TixMo (x = 1, 5, 10) and TixNb (x = 5, 10, 20) samples are all almost in the passive state within the potential region from 0VSCE to 1.5VSCE during ultrasonic cavitation erosion, and the passive current density evidently decreases with increasing Mo or Nb content, indicating the enhanced passive characteristic by adding Mo or Nb alloys during the ultrasonic cavitation erosion.  相似文献   

10.
The present work discusses the effect of the pearlitic morphology with varying fineness on the cavitation erosion behavior of eutectoid rail steel. Cavitation erosion of three different types of the pearlitic steels (furnace-cooled, air-cooled, and forced-air-cooled) consisting of coarse, fine, and very fine microstructures were tested in 3.5% NaCl solution and compared with that of the as-received pearlitic rail steel. The variation in the mean depth of erosion (MDE) and mean depth erosion rate (MDER) with erosion time was analyzed. Furthermore, the cavitation erosion resistance of the as-received, the air-cooled, and the forced-air-cooled was found to be 1.03, 1.51, and 2.14 times better than the furnace-cooled pearlitic steel, respectively. It was concluded that the cavitation erosion resistance of the pearlitic steel increased with the increase in the fineness of the microstructure.  相似文献   

11.
In this paper cerium nano-oxide films were applied on AA7020-T6 alloy by sol-gel method. Potentiodynamic polarization and EIS studies have been used to study the corrosion behavior of cerium oxide nano films in 3.5% NaCl. Microstructural and phase properties of cerium oxide were investigated by SEM and XRD. The results showed that heat-treatment temperature and pre-treatment have an important effect on microstructure and electrochemical properties of cerium nano-oxide films. It can be seen from the results that with increasing heat-treatment temperature from 150 to 300 °C, the corrosion resistance of the films increased. It is related to increase the condensation of the films with adding temperature. Also, it can be seen that with adding temperature from 300 to 400 °C, the corrosion resistance of the films decrease. This is an important case related to crystallization of the cerium oxide films between 300 and 400 °C which showed that crystallized ceria films illustrate less corrosion resistance with respect to an amorphous film. Although with applying cerium oxide films the corrosion resistance of the films increased but still the passive region of the ceria films was tiny. So that in this research especially pre-treatment (etching in NaOH solution for 1 min, washing with deionized water for 5 min, etching with acid solution which contained several acids (H2SO4, HF, HCl, H3PO4), washing with deionized water for 5 min and after that following the samples in boiling deionized water for 1 h) was applied on samples before ceria treatment. The results showed that after applying this pre-treatment the passive region of the films increased extremely. It is related to formation of the thick and porous alumina films after applying pre-treatment which are similar to millepore.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(4):1544-1548
Ultrasonic cavitation erosion experiments were performed on Ti–6Al–4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti–6Al–4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples.  相似文献   

13.
The corrosion products formed on a multiphase Cu-11.40Al-0.55Be (wt.%) alloy in 3.5% NaCl at open circuit potential, and their evolution with immersion time were studied mainly by micro-Raman and in situ AFM measurements. The aluminium content of each phase affects the formation of the corrosion products on them. After 1 day of immersion, γ2 precipitates were more susceptible to dealuminization, while α′ phase exhibited a high corrosion stability. The corrosion products evolved with immersion time, and CuCl2 and a Cu2O/CuO double layer film were the stable products formed on all the phases after long times.  相似文献   

14.
As 7075 aluminum alloy is widely used in a humid environment, in order to enhance its abrasion resistance and electrochemical corrosion resistance, the paper studied the effect of laser shock peening on abrasion resistance in artificial seawater and corrosion resistance in 3.5% NaCl solution of 7075 aluminum alloy. Result shows that when specimens were treated once and twice with 7.17 GW/cm2 the abrasion loss would be reduced by 43.75% and 46.09% compare to untreated respectively, and the corrosion rate of 7075 aluminum alloy could be reduced as much as 50.32% by LSP treatment with 7.17 GW/cm2. What’s more, the effects on the microhardness, microstructure and residual stress with different LSP impacts and power density were investigated to find out strengthening mechanism of laser shock peening, which were observed and measured by microhardness tester, optical microscope and X-ray diffraction (XRD) residual stress tester. In the entire laboratory tests, it is considered that LSP is a practical option to improve abrasion resistance in seawater and corrosion resistance of 7075 aluminum alloy.  相似文献   

15.
To alleviate the cavitation damage of metallic engineering components in hydrodynamic systems operating in marine environments, a NbN nanoceramic coating was synthesized on to a Ti-6Al-4V substrate via a double cathode glow discharge technique. The microstructure of the coating consisted of a ~13 μm thick deposition layer of a hexagonal δ′-NbN phase and a diffusion layer ~2 μm in thickness composed of face-centered cubic (fcc) B1-NaCl–structured (Ti,Nb)N. The NbN coating not only exhibited higher values of H/E and H2/E than those measured from NbN coatings deposited by other techniques, but also possessed good adhesion to the substrate. The cavitation erosion resistance of the NbN coating in a 3.5 wt% NaCl solution was investigated using an ultrasonic cavitation-induced apparatus combined with a range of electrochemical test methods. Potentiodynamic polarization measurements demonstrated that the NbN coated specimens demonstrated both a higher corrosion potential (Ecorr) and lower corrosion current density (icorr) than the uncoated substrate. Mott-Schottky analysis, combined with the point defect model (PDM), revealed that, for a given cavitation time, the donor density (ND) of the passive film on the NbN coating was reduced by 1 ~ 2 orders of magnitude relative to the uncoated Ti-6Al-4V, and the diffusivity of the point defects (D0) in the passive film grown on the NbN coating was nearly one order of magnitude lower than that on the uncoated substrate. In order to better understand the experimental observations obtained from Mott-Schottky analysis and double-charge layer capacitance measurements, first-principles density-functional theory was employed to calculate the energy of vacancy formation and the adsorption energy for chloride ions for the passive films present on both the NbN coating and bare Ti-6Al-4V.  相似文献   

16.
The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg17Al12 and α-Mg as well as some phases unidentified.  相似文献   

17.
Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly.  相似文献   

18.
郭建平 《光谱实验室》2006,23(2):274-276
用岛津ICPS-7500发射光谱仪测定镨钕氧化物(或合金)中的La、Ce、Sm、Y.试样经盐酸低温分解,制备成含0.6mol/L盐酸的待测试液,La、Sm、Y用直接法测量,Ce用固定法测量.回收率为98.20%-102.32%.  相似文献   

19.
The time-differential perturbed angular correlations technique (TDPAC) has been employed for measuring the parameters of hyperfine interactions in earlier known RAl3 compounds, synthesized at high pressure (8 GPa) and high temperature, where R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The 111Cd(111In) radioactive atom was used as a probe nucleus. The X-ray method has revealed that with the increase in the atomic number of a rare-earth element R, the obtained RAl3 high-pressure phases crystallize, respectively, into orthorhombic, hexagonal and cubic structures. It has been found that in the compounds containing R=La, Ce, Sm and Gd, a deviation from earlier known structural types and the formation of new ones is observed, which is associated with the change of the stoichiometric composition of the said compounds. The results of the PAC measurements have confirmed the deviation from the predetermined stoichiometric composition 1R:3Al for the compounds LaAl3, CeAl3, SmAl3 and GdAl3 and have verified the RAl3 stoichiometric structure for the other high-pressure phases obtained in this work.  相似文献   

20.
Plasma-nitriding is used to improve the wear resistance and corrosion resistance of plastic mold steels by modifying the surface layers of these steels. In this study, a precipitation hardenable plastic mold steel (NAK80) was plasma-nitrided at 470, 500, and 530 °C for 4, 8, and 12 h under 25% N2 + 75% H2 atmosphere in an industrial nitriding facility. The microstructures of the base material and nitrided layers as well as the core hardness were examined, and various phases present were determined by X-ray diffraction. The corrosion behaviors were evaluated using anodic polarization tests and salt fog spray tests in 3.5% NaCl solution.The results had shown that plasma-nitriding does not cause the core to soften by overaging. Nitriding and aging could be achieved simultaneously in the same treatment cycle. Plasma-nitriding of NAK80 mold steel produced a nitrided layer composed of an outer compound layer constituting a mixture of ?-nitride and γ′-nitride and an adjacent nitrogen diffusion layer on the steel surface. The amount of ?-nitride and total nitrides increased with an increase in nitriding temperature and nitriding time. Corrosion study revealed that plasma-nitriding significantly improved the corrosion resistance in terms of corrosion potential, corrosion and pitting current density, and corrosion rate. This improvement was found to be directly related to the increase in the amount of ?-nitride at the surface, indicating the amount of ?-nitride controlling the corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号