首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A simple one-step solid state reaction way of preparing nanosized LiMn2O4 powders with high-rate properties is investigated. Oxalic acid is used as a functional material to lose volatile gases during the process of calcining in order to control the morphology and change the particle size of materials. The results of X-ray diffraction and scanning electron microscopy show that particle size of materials decreases with the increase of the oxalic acid content. The electrochemical test results indicate that optimal LiMn2O4 particles (S0.5) is synthesized when the molar ratios of oxalic acid and total Mn source are 0.5:1. It also manifests that LiMn2O4 sample with middle size has the optimal electrochemical performance among five samples instead of the smallest LiMn2O4 sample. The obtained sample S0.5 with middle size exhibits a high initial discharge capacity of 125.8 mAh g?1 at 0.2C and 91.4% capacity retention over 100 cycles at 0.5C, superior to any one of other samples. In addition, when cycling at the high rate of 10C, the optimal S0.5 in this work could still reach a discharge capacity of 80.8 mAh g?1. This observation can be addressed to the fact that the middle size particles balance the contradictory of diffusion length in solid phase and particle agglomeration, which leads to perfect contacts with the conductive additive, considerable apparent Li-ion diffusion rate, and the optimal performance of S0.5.  相似文献   

2.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

3.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

4.
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g?1 at a lower current density of 0.1 or 0.2 A g?1 and remain 600 mAh g?1 at the high current density of 5 A g?1. After 300 cycles at 0.5 A g?1, a high charge capacity of 850 mAh g?1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.  相似文献   

5.
To suppress the capacity fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 material as cathode materials for lithium-ion battery, we introduce a LiF coating layer on the surface to improve the cycling performance of Li1.2Ni0.13Co0.13Mn0.54O2 material. The modified sample shows a capacity of 163.2 mAh g?1 with a capacity retention of 95% after 100 cycles at a current density of 250 mA g?1, while the pristine sample only delivers a capacity of 129.9 mAh g?1 with a capacity retention of 82%. Compared with the pristine material, the LiF-modified sample exhibits an obvious enhancement in the electrochemical performance, which will be very beneficial for this material to be commercialized on the new energy vehicles and other related areas.  相似文献   

6.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

7.
Effects of two different precipitants of Na2CO3 and Na2C2O4 on LiNi0.5Mn1.5O4 (LNMO) cathode materials, which are prepared by a modified co-precipitation method, have been investigated. Various measurements have been applied to characterize the physical and electrochemical performances of LNMO. Compared with the LNMO prepared by the oxalate co-precipitation (LNMO2), the material synthesized by the carbonate co-precipitation (LNMO1) not only shows more uniform porosity and smaller particles but also has a better rate capability and cycling performance. In addition, the sample prepared by carbonate has a stable spherical structure, due to the fact that carbonate co-precipitation with less gas release during calcination can prevent the destruction of the as-prepared LNMO material structure and promote the formation of regular particle and aperture. Based on the electrochemical test results, LNMO1 shows greatly enhanced electrochemical performance of a high initial discharge capacity of 125.6 mAh g?1 at 0.25 °C, as well as a preferably capacity retention of 96.5% after 100 cycles at 0.5 °C. And even at a high rate of 10 °C, the discharge capacity of LNMO1-based cell still approaches 83.1 mAh g?1.  相似文献   

8.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

9.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

10.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

11.
The layered Li1.2Mn0.54Ni0.13Co0.13O2 lithium-rich manganese-based solid solution cathode material has been synthesized by a simple solid-state method. The as-prepared material has a typical layered structure with R-3m and C2/m space group. The synthesized Li1.2Mn0.54Ni0.13Co0.13O2 has an irregular shape with the size range from 200 to 500 nm, and the primary particle of Li1.2Mn0.54Ni0.13Co0.13O2 has regular sphere morphology with a diameter of 320 nm. Electrochemical performances also have been investigated. The results show that the cathode material Li1.2Mn0.54Ni0.13Co0.13O2 prepared at 900 °C for 12 h has a good electrochemical performance, which can deliver a high initial discharge capacity of 233.5, 214.2, 199.3, and 168.1 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. After 50 cycles, the capacity retains 178.0, 166.3, 162.1, and 155.9 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. The results indicate that the simple method has a great potential in synthesizing manganese-based cathode materials for Li-ion batteries.  相似文献   

12.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

13.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

14.
Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres (MVHPMs) were prepared via a simple hydrothermal approach using ammonium metavanadate and ammonium molybdate as precursors followed by a thermal annealing process. The samples were characterized by XRD, SEM, TEM, EDS, and XPS carefully; it confirmed that porous microspheres with uniform Mo doping in the V2O5 matrix were obtained, and it contains an inner core self-assembled with 1D nanorods and outer shell consisting of nanoparticles. A plausible growth mechanism of Mo-doped V2O5 (Mo-V2O5) porous microspheres is suggested. The unique microstructure made the Mo-V2O5 hierarchical microspheres a good cathode material for Li-ion battery. The results indicate the synthesized Mo-V2O5 hierarchical microspheres exhibit well-improved electrochemical performance compared to the undoped samples. It delivers a high initial reversible capacity of 282 mAh g?1 at 0.2 C, 208 mAh g?1 at 2 C, and 111 mAh g?1 at 10 C, and it also exhibits good cycling stabilities; a capacity of 144 mAh g?1 is obtained after 200 cycles at 6 C with a capacity retention of >?82%, which is much high than that of pure V2O5 (95 mAh g?1 with a capacity retention of 72%).
Graphical Abstract Mo-doped V2O5 hierarchical porous microspheres with improved LIB performance
  相似文献   

15.
Carbon-coated olivine-structured LiFePO4/C composites are synthesized via an efficient and low-cost carbothermal reduction method using Fe2O3 as iron source at a relative low temperature (600 °C). The effects of two kinds of carbon sources, inorganic (acetylene black) and organic (sucrose), on the structures, morphologies, and lithium storage properties of LiFePO4/C are evaluated in details. The particle size and distribution of the carbon-coated LiFePO4 from sucrose (LiFePO4/SUC) are more uniform than that obtained from acetylene black (LiFePO4/AB). Moreover, the LiFePO4/SUC nanocomposite shows superior electrochemical properties such as high discharge capacity of 156 mAh g?1 at 0.1 C, excellent cyclic stability, and rate capability (78 mAh g?1 at 20 C), as compared to LiFePO4/AB. Cyclic voltammetric test discloses that the Li-ion diffusion, the reversibility of lithium extraction/insertion, and electrical conductivity are significantly improved in LiFePO4/SUC composite. It is believed that olivine-structured LiFePO4 decorated with carbon from organic carbon source (sucrose) using Fe2O3 is a promising cathode for high-power lithium-ion batteries.  相似文献   

16.
Carbon-coated LiCoBO3 (LiCoBO3/C) is prepared by sol-gel method and polyethylene glycol 6000 (PEG-6000) is chosen as carbon source. The LiCoBO3/C sample exhibits an initial discharge capacity of 76.7 mAh g?1 at 0.1 C, and it can deliver a discharge capacity of 65.9 mAh g?1 after 50 cycles, while the LiCoBO3 sample only presents a first discharge capacity of 34.3 and 16.8 mAh g?1 at the 50th cycle, LiCoBO3/C sample shows better cycling performance than that of LiCoBO3. The improved electrochemical properties could be mainly ascribed to the conductive carbon network and the reduced particle size of the LiCoBO3 powders. Electrochemical impedance spectroscopy (EIS) results confirm that carbon coating decreases the charge transfer resistance and improve the electrochemical reaction kinetics.  相似文献   

17.
In order to overcome the severe capacity decay of LiMn2O4 at high temperature, TiN is used as an active materials additive in this paper. The XRD and XPS test results indicate that the TiN can effectively prevent Mn from dissolving in electrolyte; galvanostatic charge-discharge test shows that LiMn2O4 electrode with TiN exhibits remarkably improved capacity retention at high temperature with capacity of 105.1 mAh g?1 at 1 C in the first cycle at 55 °C and the capacity maintains 88.9% retention after 150 cycles. And the electrochemical impedance spectroscopy result demonstrates TiN’s effectiveness in easing the increase of charge-transfer resistance during cycling. Therefore, we can conclude that TiN, as an addictive, made obvious contribution to the greatly improved electrochemical cycling performance of LiMn2O4.  相似文献   

18.
Lithium manganese oxide (LiMn2O4) has been prepared using sol-gel technique under acidic (pH = 5.8) and alkaline (pH = 9) conditions with tartaric acid as chelating agent. X-ray studies show that under acidic condition, an Mn2O3 peak was observed indicating the presence of impurities. No impurity was observed for LiMn2O4 under alkaline conditions. The particle size is mostly in the range of 124 to 185 nm from HR-TEM. The lithium diffusion coefficient, D Li+ in LiMn2O4 is of the order 10?9 cm2 s?1. By using density functional theory (DFT) calculations, structural properties have been obtained. The specific discharge capacity of the cells with LiMn2O4 prepared under alkaline condition and with LiMn2O4 prepared under acidic condition discharged at 0.5 C is in the ranges of 132 to 142 and 128 to 139 mAh g?1, respectively.  相似文献   

19.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

20.
A flexible Co3O4 hollow microsphere/graphene/carbon nanotube hybrid film is successfully prepared through a facile filtration strategy and a subsequent thermally treated process. The composition, morphology, and structure of the as-prepared film are characterized by X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. Based on the morphology characterizations on the hybrid film, the Co3O4 hollow microspheres are uniformly and closely attached on three-dimensional (3D) graphene/carbon nanotubes (GR/CNTs) network, which decreases the agglomeration of Co3O4 microspheres effectively. In this hybrid film, the 3D GR/CNT network which enhances conductance as well as prevents aggregation is a benefit to help Co3O4 to exert its lithium storage capabilities sufficiently. When used as a binder-free anode material for lithium-ion batteries, the hybrid film delivers excellent electrochemical properties involving reversible capacity (863 mAh g?1 at a current density of 100 mA g?1) and rate performance (185 mAh g?1 at a current density of 1600 mA g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号