首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Technical feasibility of an ecofriendly sequential process (ultrasound assisted extraction and reverse osmosis, or UAE and RO) was evaluated in order to obtain a functional Camu-camu (Myrciaria dubia) product with high vitamin C content. Water was used in the assisted extraction by probe ultrasound (UAE) in an experimental design to evaluate different times, amplitudes and temperatures. The best region for total phenolic (TP) and vitamin C (VC) extraction was 5 min, 60 °C and 30% amplitude. Following extraction, the sample was concentrated by reverse osmosis (R25a, 500 Da, polyamide, and 5 bar area 3 ft2), obtaining a relatively low fouling of 19%. At the end of the sequential process (by HPLC-DAD/UV vis), was obtained a concentrated camu-camu (CC) with high Vitamin C (52.01 ± 0.889 mg/g) and cyanidin-3-glucoside, being respectively 7.0 and 4.5 times higher; also the concentration of phenolic compounds was increased by 3.2 times (25.798 mg GAE/g), and anthocyanins in 6.5 times (66.169 mg of cyanidin-3-glucoside/100 g) as well as high antioxidant activity by all three methods evaluated (increased 3.0, 4.6 and 2.38 times for ABTS, DPPH, FRAP, respectively) by comparing the CC with the initial extract (CS). Twenty compounds were identified by UHPLC-QTOF-MS/MS, highlighting quercetin, gallic acid, p- coumaric, ellagic acid and cyanidin-3-glucoside, and at the first time alnusiin was detected in camu-camu. Therefore, the combination of ultrasound assisted extraction and reverse osmosis can be a promising profitable alternative in order to apply bioactive compounds in food, nutraceuticals and cosmetic matrices, bringing their benefits to consumers.  相似文献   

2.
An efficient cold-mechanical/sonic-assisted extraction technique was developed for extraction of genipin from genipap (Genipa americana) peel. Ultrasound assisted extraction (285 W, 24 kHz) was performed at 5, 10 and 15 °C for 5, 10 and 15 min. After cold-extraction, genipin was separated from pectin and proteins by aid of fungal pectinesterase. The maximum yield of non-cross-linked genipin was 7.85 ± 0.33 mg/g, at 10 °C for 15 min by means of ultrasound extraction. The protein amount in extracts decreased in all samples. If mechanical process is combined with ultrasound assisted extraction the yield is increased by 8 times after the pectinesterase-assisted polyelectrolyte complex formation between pectic polysaccharides and proteins, avoiding the typical cross-linking of genipin. This novel process is viable to obtain non-cross-linked genipin, to be used as a natural colorant and cross-linker in the food and biotechnological industries.  相似文献   

3.
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV–vis, fourier-transform infrared spectroscopy (FT–IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources  相似文献   

4.
A skillfully combined method of liquid-phase pulsed discharge and ultrasonic (LPDU) had been developed for saponins extraction from lychee seeds. Single factor and response surface methods were used to optimize the system, respectively. The optimized conditions included 30% aqueous ethanol, 62.66 mL/g ratio of liquid to solid, 3 mm centre hole diameter of hollow electrode, 123 mL/min flow velocity, length of serpentine pipe of 15 cm, 276 W ultrasonic power, 47 °C ultrasonic temperature, and discharge voltage was fixed at 14 kV. Under these conditions, it obtained a maximum saponins yield of 51.30 ± 0.08 mg/g with 10 min, which was higher than those of LPD (42.33 ± 0.98 mg/g) with 24 min, ultrasonic assisted extraction (UAE) (41.80 ± 1.31 mg/g) with 30 min and maceration (38.72 ± 1.13 mg/g) with 180 min. Meanwhile, the energy consumption of LPDU was 7560 kJ/kg, which was notably lower than those of LPD (8820 kJ/kg), UAE (25875 kJ/kg) and maceration (10248 kJ/kg). We found that the saponin constituents of LPDU were similar to LPD, UAE, ME by HPLC content detection method, and found that LPDU had the highest degree of tissue damage after scanning electron microscope (SEM) comparison, which verified the reason for its high extraction efficiency. The results showed that LPDU was an effective technology for saponins extraction, which may be potentially applied in cosmetics, medicines and food chemistry.  相似文献   

5.
Cactus is a tropical fruit with a high nutritional value; however, little information is available regarding the comprehensive utilization of its byproducts. This study aimed to explore the composition and nutritional value of cactus fruit seed oil (CFO) and reveal the effects of ultrasound-assisted extraction and traditional solvent extraction on oil quality. Foodomics analysis showed that CFO extracted using a traditional solvent is rich in linolenic acid (9c12cC18:2, 57.46 ± 0.84 %), α-tocopherol (20.01 ± 1.86 mg/100 g oil), and canolol (200.10 ± 1.21 μg/g). Compared to traditional solvent extraction, ultrasound-assisted extraction can significantly increase the content of lipid concomitants in CFO, whereas excessive ultrasound intensity may lead to the oxidation of oils and the formation of free radicals. Analysis of the thermal properties showed that ultrasound had no effect on the crystallization or melting behavior of CFO. To further demonstrate the nutritional value of CFO, a lipopolysaccharide (LPS)-induced lipid metabolism imbalance model was used. Lipidomics analysis showed that CFO significantly reduced the content of oxidized phospholipids stimulated by LPS and increased the content of highly bioactive metabolites such as ceramides, thus alleviating LPS-induced damage in C. elegans. Hence, CFO is a functional oil with high value, and ultrasound-assisted extraction is advocated. These findings provide new insights into the comprehensive utilization of cactus fruits.  相似文献   

6.
The purpose of this investigation is to evaluate the implementation of ultrasound-assisted liquid biphasic flotation (LBF) system for the recovery of natural astaxanthin from Haematococcus pluvialis microalgae. Various operating conditions of ultrasound-assisted LBF systems such as the position of ultrasound horn, mode of ultrasonication (pulse and continuous), amplitude of ultrasonication, air flowrate, duration of air flotation, and mass of H. pluvialis microalgae were evaluated. The effect of ultrasonication on the cellular morphology of microalgae was also assessed using microscopic analysis. Under the optimized operating conditions of UALBF, the maximum recovery yield, extraction efficiency, and partition coefficient of astaxanthin were 95.08 ± 3.02%, 99.74 ± 0.05%, and 185.09 ± 4.78, respectively. In addition, the successful scale-up operation of ultrasound-assisted LBF system verified the practicability of this integrated approach for an effective extraction of natural astaxanthin.  相似文献   

7.
The safety of ethanol in operations and its effects on human health are gradually being questioned. Under this premise, we attempted to use the natural surfactant tea saponin, which originates from the processing residues of camellia oil, as the additive of the extraction solvent and to extract eleutheroside B and eleutheroside E in the roots and rhizomes of E. senticosus by ultrasonic mediation. After a single-factor experiment, extraction kinetics at different powers and reaction temperatures, and Box–Behnken design optimization, the optimal conditions obtained were 0.3% tea saponin solution as the extraction solvent, 20 mL/g liquid–solid ratio, 250 W ultrasonic irradiation power (43.4 mW/g ultrasonic power density) and 40 min ultrasonic irradiation time. Under optimal conditions, satisfactory yields of eleutheroside B (1.06 ± 0.04 mg/g) and eleutheroside E (2.65 ± 0.12 mg/g) were obtained with semi pilot scale ultrasonic extraction equipment. The experiments showed that compared with the traditional thermal extraction process, the extraction time is significantly reduced at lower operating temperatures.  相似文献   

8.
We developed an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the eight ginsenosides (ginsenoside-Rg1, -Re, -Rf, -Rb1, -Rc, -Rb2, -Rb3 and -Rd) from ginseng root. A series of l-alkyl-3-methylimidazolium ionic liquids differing in composition of anions and cations were evaluated for extraction efficiency. The results indicated that the ILUAE method has a remarkable ability to improve the extraction efficiency of ginsenosides. In addition, the ILUAE procedure was also optimized on some ultrasonic parameters, such as the IL concentration, solvent to solid ratio and extraction time. Under these optimal conditions (e.g., with 0.3 M [C3MIM]Br, solvent to solid ratio of 10:1 and extraction time of 20 min), this approach gained the highest extraction yields of total ginsenosides 17.81 ± 0.47 mg/g. Compared with the regular UAE, the proposed approach exhibited 3.16 times higher efficiency and 33% shorter extraction time, which indicated that ILUAE has a broad prospect for sample preparation of medicinal plants.  相似文献   

9.
Pericarpium Citri Reticulatae 'Chachiensis' (PCRC), the premium aged pericarps of Pericarpium Citri Reticulatae, is widely used in traditional Chinese medicines with a diversity of promising bioactivity. Herein we report the extraction, characterization and underlying mechanism of anti-metabolic syndrome of an arabinan-rich polysaccharide from PCRC (PCRCP). This polysaccharide was obtained in a 7.0% yield by using ultrasound-assisted extraction under the optimized conditions of 30 mL/g liquid-to-solid ratio, 250 W ultrasound power for 20 min at 90 °C with pH 4.5. The PCRCP with an average molecular weight of 122.0 kDa, is mainly composed of D-galacturonic acid, arabinose and galactose, which may link via 1,4-linked Gal(p)-UA, 1,4-linked Ara(f) and 1,4-linked Gal(p). Supplementation with PCRCP not only effectively alleviated the weight gain, adiposity and hyperglycemia, but also regulated the key metabolic pathways involved in the de novo synthesis and β-oxidation of fatty acid in high-fat diet (HFD)-fed mice. Furthermore, PCRCP treatment caused a significant normalization in the intestinal barrier and composition of gut microbiota in mice fed by HFD. Notably, PCRCP selectively enriched Lactobacillus johnsonii at the family-genus-species levels, a known commensal bacterium, the level of which was decreased in mice fed by HFD. The depletion of microbiome induced by antibiotics, significantly compromised the effects of anti-metabolic syndrome of PCRCP in mice fed by HFD, demonstrating that the protective phenotype of PCRCP against anti-obesity is dependent on gut microbiota. PCRCP is exploitable as a potential prebiotic for the intervention of obesity and its complications.  相似文献   

10.
The use of deep eutectic solvents (DESs) as a new extraction medium is a step towards the development of green and sustainable technology. In the present study, nine DESs based on choline chloride acids, alcohols, and sugar were screened to study the extraction of curcuminoids from Curcuma longa L. Choline chloride and lactic acid DES at 1:1 M ratio gave the maximum extent of extraction. Further, DES based extraction was intensified using ultrasound. The impact of various process parameters such as % (v/v) water in DES, % (w/v) solid loading, particle size, ultrasound power intensity, and pulse mode operation of ultrasound was studied. The maximum curcuminoids yield of 77.13 mg/g was achieved using ultrasound assisted DES (UA-DES) based extraction in 20% water content DES at 5% solid loading and 0.355 mm particle size with 70.8 W/cm2 power intensity and 60% (6 sec ON and 4 sec OFF) duty cycle at 30 ± 2 °C in 20 min of irradiation time. Kinetics of UA-DES extraction was explained using Peleg’s model and concluded that it is compatible with the experimental data. Additionally, anti-solvent (water) precipitation technique was applied, which resulted in 41.97% recovery of curcuminoids with 82.22% purity from UA-DES extract in 8 h of incubation at 0 °C. The comparison was made between conventional Soxhlet, batch, DES and UA-DES based processes on the basis of yield, time, solvent requirement, temperature, energy consumption, and process cost. The developed UA-DES based extraction can be an efficient, cost effective, and green alternative to conventional solvent extraction for curcuminoids.  相似文献   

11.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

12.
Concept of waste to wealth is a hot topic with research ongoing globally to reduce carbon footprint. In an effort to follow up this cause present study focused on tomato industry waste specifically the peel of tomatoes for extraction of pectin. Pectin extraction was performed using five different extraction techniques (Ultrasound assisted extraction (UAE); microwave assisted extraction (MAE); ohmic heating assisted extraction (OHAE); ultrasound assisted microwave extraction (UAME) and ultrasound assisted ohmic heating extraction (UAOHE) at different power levels to study its extraction and degradation kinetics and in turn to optimize the extraction process. The extracted pectin yield ranged from 9.30% for OHAE to 25.42% for MAE. Also, there was very less difference in the yield of MAE and UAME extracted pectin, but at the cost of major difference in degree of esterification 59.76 ± 0.70 and 73.33 ± 1.76%, respectively. In addition, all the pectin extracted under optimized conditions was having acceptable purity, [Galacturonic acid (GalA) content ranged from 675.8 ± 11.31 to 913.3 ± 20.50 g/kg of pectin]. FTIR analysis confirmed the presence of functional groups in the finger print region of identification for polysaccharide in all the extracted pectin. According to obtained results, UAME can be considered as better green extraction technology in terms of extraction yield as well as in quality of pectin compared to the other treatments used. Therefore, results suggest that UAME can be used as an efficient pectin extraction method from tomato processing waste.  相似文献   

13.
Buriti (Mauritia flexuosa L.) is a significant source of carotenoids, but these compounds have been extracted using laborious and low-effective methods. The present work evaluated the high-intensity ultrasound combined with a chemometric approach to developing an optimal extraction method of carotenoids from buriti pulp. The multivariate optimization was carried out through two steps. First, a simplex-lattice mixture design was used to optimize the extractor solution finding higher extraction yield (903 ± 21 µg g−1) with the acetone:ethanol (75/25) mixture. After, sample mass (80 mg) and sonication time (30 min) were optimized applying central composite design (CCD) which provided a 14% improvement in the extraction method yield. So, the total carotenoid content (TCC) with optimal extraction conditions was 1026 ± 13 µg g−1 which is almost twice the yield of methods known in the literature for buriti. The RP-HPLC-DAD analysis revealed that the carotenoids are gently extracted and β-carotene is the major compound in the extracts. To confirm the accuracy, buriti samples spiked with β-carotene standard and the developed method showed recovery >84% and precision <6.5%. Furthermore, the optimized ultrasound-assisted extraction (UAE) method was applied to other samples (tomato, guava, carrot, mango, acerola, papaya, and pumpkin) and presented a yield to 5.5-fold higher when compared to the reported methods indicating high robustness. Based on results, the UAE method developed has demonstrated feasibility and reliability for the study of carotenoids in buriti pulp as well as in other plant matrices with high biological relevance.  相似文献   

14.
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only “in situ” water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm2 and 59.83 °C giving a polyphenol yield of 50.02 mg GA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled “in situ” water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.  相似文献   

15.
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis).  相似文献   

16.
This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75 °C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography–mass spectrometry (GC–MS) analysis.  相似文献   

17.
Currently, the conventional atmospheric pressure-based and vacuum-based tumbling processes have a limited improvement on the chicken characteristic attributes during the marination process. In view of this, through a breathing (pressure change) tumbling strategy, ultrasonication (40 kHz, 140 W) was applied to improve tenderness, taste, and microstructure of chicken by a redesigned tumbler. The results showed that the tumbling with the breathing action and ultrasonication significantly enhanced the marinating absorptivity, tenderness and taste, and accelerated the degradation of myosin light chain. Free peptides (from 1465.9 ± 34.6 to 4725.7 ± 43.2 μg/mL) and amino acids (from 1.503 ± 0.096 to 2.593 ± 0.109 mg/mL) rose evidently for the control and the breathing tumbling treatment assisted by ultrasound respectively. Raman analysis revealed that strength of disulfide bonds declined from 0.731 ± 0.006 to 0.607 ± 0.011 a.u. and the conversion from α-helix (decreased by 67.23%) into β-fold (increased by 1573%) conformation occurred. Low field NMR analysis indicated that the content of immobilized water increased from 77385 ± 14 to 137011 ± 106 au·ms by integral calculus. Scanning and transmission electron microscopies clearly showed a prospective rupture of myofibers, myofibrils, and lysosomes. Overall, as a potential alternative, the breathing ultrasonic tumbling means improved the marinating efficiency and characteristics of marinated chicken breast.  相似文献   

18.
Astragalus membranaceus is a medicinal and edible species in China, with a variety of biological activities. This study evaluated the reuse potential of A. membranaceus waste as a source of food antioxidants. Antioxidant and antifungal activities of flavonoids, polysaccharides, and saponins from A. membranaceus stems and leaves were evaluated. Results showed that inhibition rate of flavonoids on six tested fungi reaches 100 % at a concentration of 5 mg/mL, and the antioxidant test demonstrated satisfactory antioxidant activity. On this basis, an extremely economical ultrasonic-assisted extraction of flavonoids from A. membranaceus stems and leaves was developed and optimized via response surface methodology (RSM). Optimized conditions included an extraction time of 35 min, ethanol concentration of 75 %, liquid–solid ratio of 40 mL/g, and extraction temperature of 58 °C, in which the extraction yield of flavonoids was 22.0270 ± 2.5739 mg/g. The total flavonoids were separated and purified using activity-guided isolation technology, and frac. ccd with strong antioxidant activity were analyzed via HPLC-MS/MS. Results showed that main components are isoquercitrin and astragalin. This study can provide a potential innovative application for the development of natural food antioxidants from A. membranaceus waste.  相似文献   

19.
A highly efficient planar heterojunction OSC based on zinc phthalocyanine (ZnPc)/fullerene (C60) by controlling the orientation of the ZnPc by using copper iodide (CuI) as the interfacial layer is reported. The proportion of face-on ZnPc molecules was increased significantly on the CuI layer compared to the layer without the CuI layer, which was analyzed with wide-angle X-ray scattering (WAXS) and optical absorption. The power conversion efficiency (PCE) of the orientation controlled planar heterojunction OSC was remarkably enhanced to 3.2 ± 0.1% compared with 1.2 ± 0.1% of the conventional OSCs without the control of the molecular orientation. By inserting the 3-nm-thick CuI layer, JSC, VOC and FF have increased from 4.6 ± 0.2 to 8.9 ± 0.2 mA cm?2, from 0.48 ± 0.01 to 0.59 ± 0.02 V, and from 0.56 ± 0.01 to 0.61 ± 0.02, respectively. VOC enhancement is discussed with the result of the ultraviolet photoemission spectra (UPS) measurements.  相似文献   

20.
In this work, a continuous flow extraction system assisted by ultrasound (US) was developed for the extraction of Cr(III) from residual tanned leather shavings. US energy was delivered into the system by a tubular applicator (clamp-on tube US applicator). The effect of the US energy was investigated at 20 kHz of frequency and electrical input power of 75, 150, 300 and 600 W. Residence time and temperature profile were also evaluated. It was observed that the internal temperature profile was affected by the presence of US and inverted in comparison with the conditions without US. In this way, the temperature profile generated by the US was reproduced by using electrical resistances in order to compare the obtained results. The US intensity was measured using a hydrophone connected to a sound pressure meter. The use of the US did not alter the dynamic behavior of the system but increased the extraction efficiency when compared to the silent condition. US power above 75 W did not lead to increased extraction efficiency, when the residence time was 30 min. However, when 60 min of residence time were employed, the optimized US power was 150 W, resulting in an extraction efficiency of 71.7 ± 0.7 %, about 28 % higher when compared to the silent condition in the same temperature and other conditions. The US energy allowed a reduction in processing time and operational temperature when compared to the silent condition with the same temperature profile. The overall energy consumption with US was similar or lower than that observed without US, showing the feasibility of the proposed extraction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号