首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
俞炜  邓梓龙  吴苏晨  于程  王超 《物理学报》2019,68(5):54701-054701
基于体积分数法建立了Y型微通道中双重乳液流动非稳态理论模型,数值模拟研究了Y型微通道内双重乳液破裂情况,详细分析了双重乳液流经Y型微通道时的流场信息以及双重乳液形变参数演化特性,定量地给出了双重乳液流动破裂的驱动以及阻碍作用,揭示了双重乳液破裂流型的内在机理.研究结果表明:流经Y型微通道时,双重乳液受上游压力驱动产生形变,形变过程中乳液两端界面张力差阻碍双重乳液形变破裂,两者正相关;隧道的出现将减缓双重乳液外液滴颈部收缩速率以及沿流向拉伸的速率,并减缓了内液滴沿流向拉伸的速率,其对于内液滴颈部收缩速率影响不大;隧道破裂和不破裂工况临界线可以采用幂律关系式l~*=βCa~b进行预测,隧道破裂和阻塞破裂工况临界线可以采用线性关系l~*=α描述;与单乳液运动相图相比,双重乳液运动相图各工况的分界线关系式系数α和β均相应增大.  相似文献   

2.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

3.
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.  相似文献   

4.
This study aimed to prepare an emulsion stabilised by an ultrasound-treated casein (CAS)-hyaluronic acid (HA) complex and to protect vitamin E during in vitro digestion. It was found that high-intensity ultrasound (HIU) treatment significantly changed the hydrogen bonding, electrostatic interaction and hydrophobic interaction between CAS and HA, reduced the particle size of the CAS-HA complex, increased the intermolecular electrostatic repulsion, and thus significantly improved the emulsifying properties of the CAS-HA complex. Meanwhile, the creaming index (CI) and confocal laser scanning microscopy images showed that the stability of the CAS-HA-stabilised emulsion was the best when treated at 150 W for 10 min, which could be attributed to the enhanced adsorption capacity of the CAS-HA complex at the oil–water interface and the viscosity of the formed emulsion. In vitro digestion experiments revealed that the emulsion stabilised by the ultrasound-treated CAS-HA complex had a good protective effect on vitamin E. This study is significant for the development of emulsions for the delivery of lipophilic nutrients.  相似文献   

5.
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.  相似文献   

6.
In this study, a numerical assessment of the coalescence of binary water droplets in water-in-oil emulsion was conducted. The investigation addressed the effect of various parameters on the acoustic pressure and coalescence time of water droplets in oil phase. These include transducer material, initial droplet diameter (0.05–0.2 in), interfacial tension (0.012–0.082 N/m), dynamic viscosity (10.6–530 mPas), temperature (20–100 °C), US (ultra sound) frequency (26.04–43.53 kHz) and transducer power (2.5–40 W). The materials assessed are lead zirconate titanate (PZT), lithium niobate (LiNbO3), zinc oxide (ZnO), aluminum nitride (AlN), polyvinylidene fluoride (PVDF), and barium titanate (BaTiO3). The numerical simulation of the binary droplet coalescence showed good agreement with experimental data in the literature. The US implementation at a fixed frequency produced enhanced coalescence (t = 5.9–8.5 ms) as compared to gravitational settling (t = 9.8 ms). At different ultrasound (US) frequencies and transducer materials, variation in the acoustic pressure distribution was observed. Possible attenuation of the US waves, and the subsequent inhibitive coalescence effect under various US frequencies and viscosities, were discussed. Moreover, the results showed that the coalescence time reduced across the range of interfacial tensions which was considered. This reduction can be attributed to the fact that lower interfacial tension produces emulsions which are relatively more stable. Hence, at lower interface tension between the water and crude oil, there was more resistance to the coalescence of the water droplets due to their improved emulsion stability. The increment of the Weber number at higher droplet sizes leads to a delay in the recovery of the droplet to spherical forms after their starting deformation. These findings provide significant insights that could aid further developments in demulsification of crude oil emulsions under varying US and emulsion properties.  相似文献   

7.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

8.
α-lactalbumin was modified by ultrasound (US, 20 kHz, 43 ± 3.4 W/cm−2) pre-treatments (0, 15, 30 and 60 min) and laccase cross-linking of sonicated α-lactalbumin was used to evaluate the physical and oxidative stability of conjugated linoleic acid (CLA) emulsions. The emulsions prepared with laccase cross-linking US-α-lactalbumin (α-lactalbumin treated with US pre-treatment) and US-α-lactalbumin were scrutinized for oxidative and physical stability at room temperature for two weeks of storage. Laccase cross-linking US-α-lactalbumin (Lac-US-α-lactalbumin) revealed improved physical stability in comparison with US-α-lactalbumin, specified by droplet size, structural morphology, adsorbed protein, emulsifying properties and creaming index. SDS-PAGE analysis showed that there was formation of polymers in Lac-US-α-lactalbumin emulsion. Surface hydrophobicity of Lac-US-α-lactalbumin was higher than that of US-α-lactalbumin, and gradually enhanced with the increase of ultrasound time. More importantly, the measurements of peroxide values and conjugated dienes were used to study the oxidative stability of the CLA emulsions. The Lac-US-α-lactalbumin emulsion proved to be reducing the synthesis of fatty acid hydroperoxides and less conjugated dienes compared to the native and US-α-lactalbumin emulsions. This study revealed that the combination of US pre-treatment and laccase cross-linking might be an effective technique for the modification of CLA emulsions.  相似文献   

9.
In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200–600?MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.  相似文献   

10.
激波诱导的液滴变形和破碎   总被引:3,自引:0,他引:3       下载免费PDF全文
 建立液滴变形与破碎的模型,提出初始雾化时间概念,由此分析激波后液滴变形和破碎雾化的特征。液滴变形率、完全破碎时间的数值分析结果与实验结果基本一致。  相似文献   

11.
Acoustic droplet vaporization (ADV) is the phase-transitioning of perfluorocarbon emulsions, termed phase-shift emulsions, into bubbles using focused ultrasound. ADV has been utilized in many biomedical applications. For localized drug release, phase-shift emulsions with a bioactive payload can be incorporated within a hydrogel to yield an acoustically-responsive scaffold (ARS). The dynamics of ADV and associated drug release within hydrogels are not well understood. Additionally, emulsions used in ARSs often contain high molecular weight perfluorocarbons, which is unique relative to other ADV applications. In this study, we used ultra-high-speed brightfield and fluorescence microscopy, at frame rates up to 30 million and 0.5 million frames per second, respectively, to elucidate ADV dynamics and payload release kinetics in fibrin-based ARSs containing phase-shift emulsions with three different perfluorocarbons: perfluoropentane (PFP), perfluorohexane (PFH), and perfluorooctane (PFO). At an ultrasound excitation frequency of 2.5 MHz, the maximum expansion ratio, defined as the maximum bubble diameter during ADV normalized by the initial emulsion diameter, was 4.3 ± 0.8, 4.1 ± 0.6, and 3.6 ± 0.4, for PFP, PFH, PFO emulsions, respectively. ADV yielded stable bubble formation in PFP and PFH emulsions, though the bubble growth rate post-ADV was three orders of magnitudes slower in the latter emulsion. Comparatively, ADV generated bubbles in PFO emulsions underwent repeated vaporization/recondensation or fragmentation. Different ADV-generated bubble dynamics resulted in distinct release kinetics in phase-shift emulsions carrying fluorescently-labeled payloads. The results provide physical insight enabling the modulation of bubble dynamics with ADV and hence release kinetics, which can be used for both diagnostic and therapeutic applications of ultrasound.  相似文献   

12.
Traditional preparation of protein particles is usually complex and tedious, which is a major issue in the development of Pickering high internal phase emulsions (HIPEs). In this study, a facile and in-situ method for the preparation of food-grade Pickering HIPEs was developed using ultrasound pre-fractured casein flocs. The ultrasonic-treated casein protein and resulting Pickering HIPEs were characterised using particle size distribution, confocal laser scanning microscopy (CLSM), cryo-SEM, and rheological measurement. The results indicated that pH values of casein and ultrasonic power level were key parameters for casein protein dispersion into nanoparticles to form o/w Pickering HIPEs. In optimal conditions, the hexagons of emulsion droplets were close together, and the emulsions formed with ultrasonic caseins exhibited gel-like behaviour. Additionally, ultrasonic microscale-sized caseins (about 25 μm) disappeared upon the use of high speed homogenisation during the formation of HIPEs, while the chemical distribution revealed by confocal laser scanning microscopy indicated that the dispersive nanoparticles from casein proteins were evidently absorbed on the interface of HIPEs (cryo-SEM). These findings prove that ultrasound is an effective tool to loosen casein flocs to induce the in-situ formation of stabilised Pickering HIPEs. Overall, this work provides a green and facile route to convert edible oil into a soft solid, which has great potential for applications in biomedical materials, 3D printing technology, and various cosmetics.  相似文献   

13.
金纳米团簇(简称金簇)由几到几百个金原子及修饰试剂组成,由于其尺寸接近于电子费米波长,表现出良好的发光特性及生物相容性,是一类新型纳米标记探针。目前,金纳米团簇在生物检测、细胞成像、癌症诊断及治疗等领域受到研究者的广泛关注。然而,对于光照条件下金簇的稳定性还不清楚。在合成组氨酸、谷胱甘肽混合修饰金簇的基础上,系统研究了光照条件下金簇在不同pH(5.0,7.4和9.0)的荧光变化规律,结果表明,在氙灯强光照射下,金纳米团簇的荧光会随着照射时间的增加逐渐降低,在pH 9.0条件下比pH 5.0及7.4时降低更快,说明金簇在pH 5.0及7.4时光稳定性更好。在此基础上,采用紫外-可见吸收光谱、红外光谱等手段研究了光照前后金簇表面基团的变化规律,发现光照后金簇的紫外可见吸收光谱及红外光谱均发生了明显的变化,说明光照导致金簇表面修饰基团发生了变化。当向体系中通入氮气后,金簇最大发射波长处荧光强度随照射时间的变化明显变慢,说明金簇表面基团与溶液中溶解氧发生了反应,导致金簇表面电荷及修饰试剂状态发生变化,从而导致金簇荧光产生猝灭。相关研究结果对于金纳米团簇在生命科学及分析化学等领域的进一步应用具有一定的参考价值。  相似文献   

14.
Meat emulsions were prepared by replacing water with basic electrolyzed water (BEW) and reducing NaCl content by 0, 10, 20, 30, 40, and 50%. The emulsions were sonicated in an ultrasound bath (25 kHz, 175 W, normal mode) for 0, 10, and 20 min. The physicochemical (pH, redox potential, water activity, and color parameters) and technological (cooking yield, emulsion stability, and texture) characteristics were evaluated. The US operation time of 20 min improved the emulsion stability, cooking yield, and texture of the emulsions with 10% and 20% NaCl reduction. The BEW-treated emulsions exhibited good fat retention and moderate water retention capacity. The combination of US and BEW for 20 min provided good emulsion stability and cooking yield for the formulations with up to 30% NaCl reduction, which exhibited texture profile similar to the control (0% NaCl reduction). Therefore, it is possible to produce reduced-salt meat emulsions using the combination of US and BEW.  相似文献   

15.
Acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels containing monodispersed perfluorocarbon (PFC) emulsions, respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Previously, ADV has been used to control the release of bioactive payloads from ARSs to stimulate regenerative processes. In this study, we used classical nucleation theory (CNT) to predict the nucleation pressure in emulsions of different PFC cores as well as the corresponding condensation pressure of the ADV-generated bubbles. According to CNT, the threshold bubble radii above which ADV-generated bubbles remain stable against condensation were 0.4 µm and 5.2 µm for perfluoropentane (PFP) and perfluorohexane (PFH) bubbles, respectively, while ADV-generated bubbles of any size in perfluorooctane (PFO) condense back to liquid at ambient condition. Additionally, consistent with the CNT findings, stable bubble formation from PFH emulsion was experimentally observed using confocal imaging while PFO emulsion likely underwent repeated vaporization and recondensation during ultrasound pulses. In further experimental studies, we utilized this unique feature of ADV in generating stable or transient bubbles, through tailoring the PFC core and ultrasound parameters (excitation frequency and pulse duration), for sequential delivery of two payloads from PFC emulsions in ARSs. ADV-generated stable bubbles from PFH correlated with complete release of the payload while transient ADV resulted in partial release, where the amount of payload release increased with the number of ultrasound exposure. Overall, these results can be used in developing drug delivery strategies using ARSs.  相似文献   

16.
The effects of application of ultrasonic waves to recombined milk emulsions (3.5% fat, 7% total solids) and raw milk on fat destabilization and creaming were examined. Coarse and fine recombined emulsions (D[4,3]=9.3 μm and 2.7 μm, respectively) and raw milk (D[4,3]=4.9 μm) were subjected to ultrasound for 5 min at 35°C and 400 kHz or 1.6 MHz (using a single transducer) or 400 kHz (where the emulsion was sandwiched between two transducers). Creaming, as calculated from Turbiscan measurements, was more evident in the coarse recombined emulsion and raw milk compared to that of the recombined fine emulsion. Micrographs confirmed that there was flocculation and coalescence in creamed layer of emulsion. Coalescence was confirmed by particle size measurement. These results imply that ultrasound has potential to pre-dispose fat particles in milk emulsions to creaming in standing wave systems and in systems with inhomogeneous sound distributions.  相似文献   

17.
The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions.  相似文献   

18.
We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30-150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastable and points to a new class of mesoscopic equilibrium structures. Thermodynamic stability is demonstrated by the spontaneous evolution of binary droplet mixtures towards one intermediate size distribution. Equilibrium interfacial curvature due to an asymmetric charge distribution induced by adsorbed colloids explains the growth of emulsion droplets upon salt addition. Moreover, the existence of a minimal radius of curvature with a concomitant expulsion of excess oil is in close analogy with microemulsions.  相似文献   

19.
酪蛋白酸钠作为一种良好的乳化剂和乳化稳定剂,对乳饮料品质具有重要的作用。蔗糖作为甜味剂,可以提高乳饮料的口感。但酪蛋白结构和性质很容易受到其所处的微环境的影响,为了分析蔗糖对酪蛋白酸钠结构及其乳化性的影响,利用荧光光谱技术探讨了酪蛋白酸钠荧光光谱和表面疏水性的变化,利用动态光散射技术分析了酪蛋白酸钠乳液液滴流体力学直径的变化,利用Turbiscan光谱学稳定性测试评价了酪蛋白酸钠乳液的背散射光强度变化以及稳定性指数(TSI)。结果表明:蔗糖会使酪蛋白酸钠发生内源荧光猝灭,猝灭速率常数KS<2.0×1010 L·mol-1·s-1,属于动态猝灭,未形成稳定的基态配合物,表明两者仅以较弱的氢键和疏水相互作用结合。酪蛋白酸钠的表面疏水性显著增强(p<0.05),部分酪蛋白酸钠聚集程度增加,形成了可溶性聚集体。随着蔗糖浓度的增加,酪蛋白酸钠乳液流体力学直径增大,是高压均质时蛋白聚集体在油水界面上优先吸附的结果。背散射光强度结果显示随着蔗糖浓度的增加,乳液越不易产生分层、浓度变化、乳滴迁移等不稳定性现象。稳定性指数显著增大(p<0.05),乳液稳定性增强。  相似文献   

20.
On the basis of a volume of fluid(VOF) liquid/liquid interface tracking method, we apply a two-dimensional model to investigate the dynamic behaviors of droplet breakup through a splitting microchannel. The feasibility and applicability of the theoretical model are experimentally validated. Four flow regimes are observed in the splitting microchannel, that is, breakup with permanent obstruction, breakup with temporary obstruction, breakup with tunnels, and non-breakup. The results indicate that the increase of the capillary number Ca provides considerable upstream pressure to accelerate the droplet deformation, which is favorable for the droplet breakup. The decrease of the droplet size contributes to its shape changing from the plug to the sphere, which results in weakening droplet deformation ability and generating the nonbreakup flow regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号