首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.  相似文献   

2.
The influence of non-uniform temperature distribution in the cross section of a high-temperature superconductor (thermal size effect) on its voltage–current characteristic and the instability conditions of charged current is investigated. The boundary values of the electric field and the current above which the charged current is unstable are defined taking into account the size effect. It is shown that the calculated current of the instability determining the maximum allowable value of the charged current is reduced, if the thermal heterogeneity of the electrodynamics states is taken into consideration in the theoretical analysis of the stability conditions. As a result, the limiting stable values of the electric field and current depend nonlinearly on the thickness of the superconductor, its critical properties as well as on the external cooling conditions. Therefore, the current of instability will not increase proportionally to the increase in the thickness of superconductor or its critical current density at the intensive cooling conditions.  相似文献   

3.
Magnetic frustrations can enhance quantum fluctuations in spin systems and lead to exotic topological insulating states.When coupled to mobile electrons,they may give rise to unusual non-Fermi liquid or metallic spin liquid states whose nature has not been well explored.Here,we propose a spin current Kondo mechanism underlying a series of non-Fermi liquid phases on the border of Kondo and magnetic phases in a frustrated three-impurity Kondo model.This mechanism is confirmed by renormalization group analysis and describes movable Kondo singlets called"holons"induced by an effective coupling between the spin current of conduction electrons and the vector chirality of localized spins.Similar mechanisms may widely exist in all frustrated Kondo systems and be detected through spin current noise measurements.  相似文献   

4.
BEPCⅡ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM) system is built on BEPCⅡ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPCⅡ timing system can also use the bunch current database to decide which bucket needs to refill to implement ``top-off' njection.  相似文献   

5.
We perform a QCD sum rule analysis for the light scalar meson σ   (f0(600)f0(600)) with a tetraquark current related to the instanton picture for QCD vacuum. We demonstrate that instanton current, including equal weights of scalar and pseudoscalar diquark–antidiquarks, leads to a strong cancelation between the contributions of high dimension operators in the operator product expansion (OPE). Furthermore, in the case of this current direct instanton contributions do not spoil the sum rules. Our calculation, obtained from the OPE up to dimension 10 operators, gives the mass of σ-meson around 780 MeV.  相似文献   

6.
This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiO3 bicrystal substrate. The measurement of noise spectrum at 77K shows that the white noise at 200 Hz is about 1×10^-4 φ0/√Hz. The minimal magnetic gradient is measured and the results suggest that the minimal magnetic gradient is 94 pT/m. The planar gradiometer is used in non-destructive evaluation (NDE) experiments to detect the artifacts in conducting aluminium plates by performing eddy current testing in an unshielded environment. The effect of the exciting coil dimension on the NDE results is investigated. By mapping out the induced field distribution, flaws about 10mm below the plate surface can be clearly identified.  相似文献   

7.
8.
In the past half century, we have witnessed an explosive growth of effort in that cross-discipline which is characterized by the deposition of localized high–energy densities in condensed matter by means of energetic ions—the field of ion–solid interactions. In this overview, the fundamental physical processes of ion–solid interaction are outlined. A brief discussion is given of the basic energy transfer mechanisms and the consequences of ion impact into solids such as scattering, sputtering and radiation damage. It is now understood that radiation damage is itself far from being restricted to deleterious and detrimental consequences. Our knowledge of the growing variety of changes in the physical, chemical and biological properties of target materials are growing exponentially. Many valuable beneficial technological applications, some of which we discuss, have their origin in physical processes taking place at the nanometric level.  相似文献   

9.
A zigzag boundary between a $d_{x^2 - y^2}$ and an s-wave superconductor is believed to behave like a long Josephson junction with alternating sections of 0 and π symmetry. We calculate the field-dependent critical current of such a junction, using a simple model. The calculation involves discretizing the partial differential equation for the phase difference across a long 0-π junction. In this form, the equations describe a hybrid ladder of inductively coupled small 0 and π resistively and capacitively shunted Josephson junctions (RCSJ's). The calculated critical critical current density Jc(Ha) is maximum at non-zero applied magnetic field Ha, and depends strongly on the ratio of Josephson penetration depth λJ to facet length Lf. If λJ/Lf ≫1 and the number of facets is large, there is a broad range of Ha where Jc(Ha) is less than 2% of the maximum critical current density of a long 0 junction. All of these features are in qualitative agreement with recent experiments. In the limit λJ/Lf →∞, our model reduces to a previously-obtained analytical superposition result for Jc(Ha). In the same limit, we also obtain an analytical expression for the effective field-dependent quality factor QJ(Ha), finding that . We suggest that measuring the field-dependence of QJ(Ha) would provide further evidence that this RCSJ model applies to a long 0-π junction between a d-wave and an s-wave superconductor.  相似文献   

10.
A space-dependent atomic superfluid current with an explicit analytical expression and its role in Bose–Einstein condensates are studied. The factors determining the intensity and oscillating amplitude of the space-dependent atomic superfluid current are explored in detail. Research findings reveal that the intensity of the current can be regulated by setting an appropriate configuration of the trap and its oscillating amplitude can be adjusted via Feshbach resonance. It is numerically demonstrated that the space-dependent atomic superfluid current can exert great influence on the spatial distribution of condensed atoms, and even force condensed atoms into very complex distributional states with spatial chaos.  相似文献   

11.
The time evolution of a charge qubit coupled electrostatically with different detectors in the forms of single, double and triple quantum dot linear systems in the T-shaped configuration between two reservoirs is theoretically considered. The correspondence between the qubit quantum dot oscillations and the detector current is studied for different values of the inter-dot tunneling amplitudes and the qubit–detector interaction strength. We have found that even for a qubit coupled with a single QD detector, the coherent beat patterns appear in the oscillations of the qubit charge. This effect is more evident for a qubit coupled with double or triple-QD detectors. The beats can be also observed in both the detector current and the detector quantum dot occupations. Moreover, in the presence of beats the qubit oscillations hold longer in time in comparison with the beats-free systems with monotonously decaying oscillations. The dependence of the qubit dynamics on different initial occupations of the detector sites (memory effect) is also analyzed.  相似文献   

12.
In highly resistive superconducting tunnel junctions, excess subgap current is usually observed and is often attributed to microscopic pinholes in the tunnel barrier. We have studied the subgap current in superconductor-insulator-superconductor (SIS) and superconductor-insulator-normal-metal (SIN) junctions. In Al/AlO(x)/Al junctions, we observed a decrease of 2 orders of magnitude in the current upon the transition from the SIS to the SIN regime, where it then matched theory. In Al/AlO(x)/Cu junctions, we also observed generic features of coherent diffusive Andreev transport in a junction with a homogenous barrier. We use the quasiclassical Keldysh-Green function theory to quantify single- and two-particle tunneling and find good agreement with experiment over 2 orders of magnitude in transparency. We argue that our observations rule out pinholes as the origin of the excess current.  相似文献   

13.
Most alternating current (ac) polymer EL (electroluminescent) devices to date are based on symmetrical structure. Here novel alternating current EL devices with asymmetric structure are successfully fabricated by using a hole type polymer PDDOPV [poly (2,5-bis (dodecyloxy)-phenylenevinylene)] and an electron type polymer PPQ [poly (phenyl quinoxaline)]. We report that performance of polymer devices with heterojunction in ac operation is not so sensitive to thickness of the two polymer layers as in direct current (dc) operation. This new advantage of ac operation mode over dc means easy production and cheap facilities in large-scale production in the near future. Different emission spectra are obtained when our ac devices operate in ac mode, forward and reverse bias. Emission spectrum at reverse bias includes two parts: one is from PDDOPV, the other is from PPQ.  相似文献   

14.
俞阿龙 《中国物理 B》2008,17(3):878-882
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.  相似文献   

15.
The correlation between the GCR intensity and the tilt of the heliospheric current sheet (HCS) during three solar cycles is considered. The correlation coefficients for the periods of decreasing and increasing intensity have been calculated, and the time lag of the GCR variations delay relative to changes in the HCS tilt has been determined. It has been shown that the correlation coefficients are independent of the heliospheric magnetic field (HMF) direction. The possible diffusive mechanism, by which the current sheet tilt is related to the GCR intensity, is briefly discussed.  相似文献   

16.
We consider moments of the non-diagonal vector, axial-vector, scalar and pseudo-scalar current correlators involving two different massive quark flavours up to three-loop accuracy. Expansions around the limits where one mass is zero and the equal-mass case are computed. These results are used to construct approximations valid for arbitrary mass values.  相似文献   

17.
18.
19.
The f sloped current noise power spectra, observed in organic semiconductors, have been interpreted within a variable range hopping mechanism of the fluctuations. The relative current noise power spectral density exhibits a maximum at the trap-filling transition between the ohmic and the space-charge-limited-current regime [Phys. Rev. Lett. 95, 236601 (2005)]. Here, we discuss the electronic conditions determining the crossover from ohmic to space-charge-limited transport. These arguments shed light on the need to adopt a percolative fluctuation picture to account for the competition between insulating and conductive phases coexisting at the transition, where small changes in the external bias lead to dramatic effects in the fluctuations.  相似文献   

20.
A novel fiber-optic current sensing scheme is proposed by converting the Faraday rotation to the optical signal's degree of polarization (DOP) change. In this scheme, the lightwave passes through a fiber resonant cavity multiply and experiences Faraday rotation simultaneously. Its main merit is immunity from the environment disturbance to the fiber used in ordinary Faraday rotation sensor. Brief theoretical analysis and simulation are given to show its basic characteristics. Experimental results are demonstrated and the feasibility of the proposed method is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号