首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We investigated the growth of in-situ n-type doped epitaxial Si layers with arsenic and phosphorus by means of low-temperature chemical vapor deposition using trisilane as Si-precursor. Indeed, in order to prevent the alteration of the characteristics of the devices which are already present on the wafer, an epitaxy process at low temperature is highly desired for applications such as BiCMOS. In this work, the varying parameters are the deposition temperature, the Si-precursor mass flow and the dopant gas flow. As a result, a process for the deposition of heavily doped epilayers was demonstrated at 600 °C with high deposition rate, which is important for maintaining high throughput and low process cost. We showed that using trisilane as a Si-precursor resulted in a much more linear n-type doping behavior than using dichlorosilane. Therefore it allowed an easier process control and a wider dynamic doping range. Our process is an interesting route for the epitaxy of a low-resistance emitter layer for bipolar transistor application.  相似文献   

2.
In this article we present the first results obtained for nanostructured γ-Ni20Zn80 alloy prepared by a thermo-mechanical (TM) process developed in our laboratory. The process uses the energy stored in the defect structure, generated via mechanical milling of the nickel, to accelerate the reaction in the solid state, allowing a more rapid alloy formation. The process presents several advantages, when compared with techniques currently used for the production of this class of materials. The X-ray diffraction pattern for the alloy produced by the TM process is compared with that measured for the same alloy, produced by the mechanical alloying technique. The results show that the TM process holds the potential to become a valuable alternative method for the production of nanostructured materials.  相似文献   

3.
Si wafers are widely used as a substrate material for fabricating ICs. The quality of ICs depends on the quality of Si wafers. The chemo-mechanical grinding (CMG) with soft abrasive grinding wheels (SAGW) has been recently found to be a great potential process for machining Si wafers to generate superior surface quality at low cost. However, there have been very few studies on observing variation of topography of scratch/texture and understanding basic eliminating process of scratch/texture on the ground Si wafer. Furthermore, few reports on the variation of surface roughness and material removal rate (MRR) during CMG process and relationship between MRR and surface roughness during CMG process are presented. In this paper, a series of CMG experiments have been conducted to study the elimination process of artificial scratches created on etched Si surfaces and residual textures induced by SD1500 diamond wheel in CMG process, and to understand the topography variations of Si surfaces and some basic grinding characteristics during CMG process.  相似文献   

4.
We report here microscopic process involved in the photo-excited Fano interaction due to nonlinear process in the silicon nanostructures. Photo-excited Raman line-shapes are investigated to reveal the presence of nonlinear Fano interaction in the silicon nanostructures for three different sizes. The Fano interaction is found to be more prominent due to the phase matching between electronic and phonon Raman scatterings for smaller sized nanostructures. Phase matching is achieved by nonlinear process of two-wave mixing in the silicon nanostructures followed by the formation of electron-phonon bound state.  相似文献   

5.
姚灿  王育人  蓝鼎  段俐  康琦 《中国物理快报》2008,25(10):3811-3814
The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the selfassembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.  相似文献   

6.
To achieve desired accuracy, precision and surface roughness during laser-material removal process, monitoring and control of the process parameters related to laser, optics, workpiece material and its motion are required. Focus position, defined as a gap between the focusing lens and the surface of the sample workpiece, is one of the most critical process parameters, which determines the projection of the intensity of the laser beam on the surface to be ablated and therefore directly affects volume and geometry of the material removed and there by machining quality. In this paper, acoustic emission (AE) generated by laser-material interactions was statistically analyzed with respect to the variations in the focus position. The study involved on-line measurements of the AE signal from the laser-material interaction zone as a function of the focus position and the width of the machined trenches. Several basic statistical parameters, e.g. average amplitude, variance and power spectrum density were analyzed to select distinct informational parameters. Pattern recognition analysis of three informational parameters based on variances within frequency diapasons of 20-180, 180-300, and 300-500 kHz was used for reliable classification of the focus position and width of the machined trenches. The results provide important information for future development of on-line monitoring and control systems for laser-material removal process.  相似文献   

7.
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 105 cm−1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 104 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.  相似文献   

8.
We achieve a successful novel lift-off of patterning Pt/Ti electrodes on SiO2/Si substrates by employing ZnO sacrificial layer deposition and patterning, successive uniform Pt/Ti deposition and final lift-off. Then we deposit PZT thin films on the electrodes. Compared with the conventional lift-off processes for the electrodes, this novel process does not need post-annealing, which must be performed after conventional lift-off process. It is demonstrated that the electrodes patterned by the novel lift-off process have stronger adhesion. The electrodes and the PZT films on the electrodes are more compact and smoother than those by the conventional lift-off process.  相似文献   

9.
We study the polariton relaxation dynamics for different scattering mechanisms as: Phonon and electron scattering procesess. The relaxation polariton is obtained at very short times by solving the Boltzman equation. Instead of the well-known relaxation process by phonons, we show that the bottleneck effect relaxes to the ground state more efficiently at low pump power intensity when the electron relaxation process is included. In this way, we clearly demonstrate that different relaxation times exist, for which any of these two mechanism is more efficient to relax the polariton population to the ground state.  相似文献   

10.
Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.  相似文献   

11.
The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio-frequency amplifiers or field-emission-controllable cold-electron guns for field-emission displays. This fabrication process is compatible with currently used semiconductor-processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on a planar Si surface or inside trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. This carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices. Received: 30 August 2001 / Accepted: 3 September 2001 / Published online: 20 December 2001  相似文献   

12.
The explicit and fully analytic transient solution for the transition probability density associated with a nonlinear birth and death process on Z is constructed. The time-dependent variance is proportional to t+Bt2 (with B being a constant), thus exhibiting a super-diffusive behavior. The space continuous limit of this process is a well-known diffusion process with nonlinear drift for which the transition probability density is also known explicitly in a very simple way.  相似文献   

13.
The electrical and structural properties of polycrystalline Cu(In, Ga)Se2 films grown on polyimide (PI) substrates below 400℃ via one-stage and three-stage co-evaporation process have been investigated by x-ray diffraction spectra (XRD), scanning electron microscopy (SEM) and Hall effect measurement. As shown by XRD spectra, the stoichiometric CIGS films obtained by one-stage process exhibit the characteristic diffraction peaks of the (In0.68Ga0.32)2Se3 and Cu(In0.7Ga0.3)2Se. It is also found that the film structures indicate more columnar and compact than the three-stage process films from SEM images. The stoichiometric CIGS films obtained by three-stage process exhibit the coexistence of the secondary phase of (In0.68Ga0.32)2Se3, Cu2-xSe and Cu(In0.7Ga0.3)2Se. High net carrier concentration and sheet conductivity are also observed for this kind of film, related to the presence of Cu2-xSe phase. As a result, when the CIGS film growth temperature is below 400℃, the three-stage process is inefficient for solar cells. By using the one-stage co-evaporation process, the flexible CIGS solar cell on a PI substrate with the best conversion efficiency of 6.38% is demonstrated (active area 0.16cm^2).  相似文献   

14.
For a set of two-dimensional passive random media that have the same randomness and different shapes, the effects of morphology on the time evolution of the power spectrum of the localized modes supported by the media are investigated. The results demonstrate that the evolving process of the spectrum, the lifetime of short-lived modes and the amount of long-lived modes are morphological-dependent, while the lifetime of long-lived modes is morphological-independent. The denser the medium is, the quicker the evolving process and the shorter the lifetime of the short-lived modes are. Single-mode operation is more possible and occurs more early for a denser medium, which is of practical importance for proposing a mode-selecting technique for random lasers.  相似文献   

15.
William K. Bertram 《Physica A》2009,388(14):2865-2873
In this paper we present a method for determining optimal trading strategies for Itô diffusion processes. By framing the problem in terms of the first passage time for the process we derive distribution and density functions for the trade length and use these functions to calculate the expected trading frequency for the strategy. The expected value and the variance of the rate of profit are obtained as functions of the return per trade and trading frequency. We present two measures for trade drawdown which may be used as constraints when determining an optimal strategy. The optimal strategy is calculated for the Ornstein-Uhlenbeck process by maximising the expected rate of profit.  相似文献   

16.
The changes in Raman spectra of graphene flakes after lithography processing are systematically investigated. It is found that substantial changes in the intensity of several Raman peaks are observed after lithography processes involving electron-sensitive and photon-sensitive resists. This finding is related to the generation of disorder and introduction of impurities in the graphene flakes. It is observed that the disorder induced after spin coating PMMA resist on the graphene flakes cannot be removed by acetone but can be eliminated by means of an annealing process. The use of the AZ6624 photo-sensitive resist produces Raman changes typical for amorphization. When using this resist, the disorder-induced changes in the Raman spectra persist even after the same annealing process, implying that the contamination caused by the used photo-sensitive resist is more difficult to eliminate. The present results emphasize the important role played by the lithography process, often taken for granted, in the physical properties of graphene.  相似文献   

17.
Pulsed Laser-Induced Epitaxy (PLIE)/Gas Immersion Laser Doping (GILD) offers several advantages over alternative epitaxial processes, especially because the process can be made spatially selective. Here, a pulsed XeCl excimer laser is used to grow poly-Si1–xGex layers with Ge fractions up to 30% by intermixing a structure of electron beam-evaporated a-Ge on poly-Si deposited on quartz. Arsenic or boron dopant is incorporated during the melt process by using, respectively, an AsF5 or BF3 gas ambient. RBS and SIMS analysis reveal that the Ge metallurgical depth, the dopant junction depth and the incorporated dopant dose scale with the laser energy density and the number of laser pulses. The sheet resistance values reached after GILD process are low enough to be suitable for the fabrication of source and drain for poly-SiGe TFTs.  相似文献   

18.
19.
Intense pulsed light (IPL) technique has been proposed to make large grains Cu(In0.7Ga0.3)Se2 (CIGS) film using CIGS particles. The proposed process is non-vacuum based and performed at room temperature without selenization treatment. Melting and recrystallization of CIGS particles to larger grains without structural deformation and phase transformation are proved with adequate characterization evidences. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion analysis (EDS) were used to characterize the prepared films. Melting of the CIGS particles and recrystallization to larger grains by light energy in 20 ms short reaction time could be the reason for no structural deformation and secondary phase generation during the process. The CIGS film prepared from its constituent nanoparticles by IPL treatment has great potential for use as absorber layer for solar cell application and is expected to have large impact on cell fabrication process in terms of cost reduction and simplified processing.  相似文献   

20.
For increasing the packing density of electronic devices and enabling 3D wiring, new concepts of interconnection for flexible circuit boards are required. The backside wiring is one innovative concept which, however, requires interconnections from the back to the front side by means of vias.Results on backside opening of polymer foils for exposing a thin metal film deposited at the front side are presented. For the experiments, a thin polyimide foil covered with a thin molybdenum metal film was used. By using mask projection of a pulsed UV-laser beam (248 nm, 20 ns) polymer foil was ablated. The laser ablation process must be adjusted in the manner to avoid damage of the thin metal film, to prevent cones formation at laser ablation, but still enabling the clean ablation of the polymer. The influence of process parameters on the backside opening is discussed and compared with theoretical estimations of the laser-induced temperatures. Using a two-step ablation process applying first high fluences to ablate the main part of the foil and finishing with low laser fluence turns out to be advantageous. This backside opening (BSO) can be used to perform an electrical contact from the backside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号