首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
谐振式光纤陀螺(R~FOG)是第二代光纤陀螺,其性能受各种噪声因素的影响。为提高谐振式光纤陀螺的性能,对谐振式光纤陀螺的瑞利背向散射、克尔效应、磁光法拉第效应和偏振态耦合等各种噪声进行了分析,并提出了对偏振态耦合噪声的解决方法。在此基础上,得到保偏光纤环旋转90°对接的谐振腔优化结构。该结构可以有效减小谐振腔的偏振噪声和磁光法拉第噪声,且可改善陀螺系统的温度特性。  相似文献   

2.
蓝士祺  雷兴  王珂  胡强  韩宗虎 《应用光学》2018,39(2):290-294
背向散射噪声是谐振式光纤陀螺的主要噪声之一。基于载波抑制法降低背向散射噪声的原理,建立了温度和电压对陀螺零偏影响的数学模型,理论证明此方法受温度影响较大且对电路要求较高。提出了三频差动谐振式光纤陀螺新方案,该方案通过谐振腔内运行三束频率间隔较大的光波来抑制背向散射噪声。与传统二频闭环陀螺进行了对比试验,结果表明:新方案能有效地降低陀螺噪声,最大陀螺零偏和零偏稳定性改善约4倍。  相似文献   

3.
保偏光纤谐振腔交叉偏振耦合引起的偏振波动是谐振式光纤陀螺的主要噪声源之一,保偏光纤偏振主轴旋转90°对接是克服偏振波动的有效方法,其对接角度误差大小对陀螺噪声抑制效果有重要影响。为此利用迈克耳孙(Michelson)白光光纤干涉仪偏振耦合测试方法,从理论上对双耦合器保偏光纤谐振腔的90°对接误差进行了分析,得到迈克耳孙光纤干涉仪输出的干涉交流项公式和干涉波形,进而计算得到双耦合器保偏光纤谐振腔的90°对接误差角度。对双耦合器的保偏光纤谐振腔90°对接角度误差控制进行了实验研究,实现了0.37°的角度对接误差。  相似文献   

4.
李申  马海强  吴令安  翟光杰 《物理学报》2013,62(8):84214-084214
偏振控制在光通信中是至关重要的技术, 关系着通信系统的稳定性和误码率. 本文提出一种基于双向Sagnac环工作方式的全光纤高速偏振控制方案, 通过调节环中一个光纤电光相位调制器的相位差而精确控制光场偏振方向, 并且实现了单个端口输出各种偏振态, 无需后续耦合操作. 相位控制精度为10-3 rad, 最大消光比可达30 dB, 工作速率可达2 GHz. 由于本方案的精度、调制速度和稳定性都很高, 并采用了器件简单、成本低廉的全光纤光路, 易于集成, 在量子保密通信等光通信领域中有很好的应用前景. 关键词: 光纤偏振控制器 Sagnac环 量子通信  相似文献   

5.
电光相位调制器谐波响应对光纤陀螺的影响   总被引:8,自引:3,他引:5  
从电光相位调制器的谐波响应出发,对干涉型光纤陀螺信号零偏、零漂的产生来源进行了探讨.用干涉理论和正弦波调制解调分析从原理上指出调制器的振幅与相位两种谐波可产生陀螺信号的零偏和零漂.根据调制器典型数据所做的模拟与人为加入温漂时所得的试验结果相当吻合.从而证实调制器谐波响应是产生陀螺信号偏移和漂移的主要原因,为减小光纤陀螺零偏和零漂提供了一条新思路.  相似文献   

6.
偏振噪声是谐振式光纤陀螺谐振腔中较为严重的光学噪声之一。基于琼斯矩阵的方法建立完整的光路传输模型,对谐振腔顺时针和逆时针两路光传输进行分析,得到环境温度在-40℃~80℃范围内变化时偏振噪声导致的陀螺误差。结果表明,在线起偏器消光比为30 dB时,耦合器直通端对准角度误差小于2.78°,耦合系数为0.05,双90°熔接点两侧光纤长度差容错值在0.207 m以内,使得陀螺输出误差小于0.01 (°)/h。基于此,当陀螺系统工作导致内部温度分布非均匀时,谐振腔上每相邻两段光纤间温度分布差需小于3.122℃。各影响因素的参数选择可为变温环境下由于偏振噪声导致的误差分配设计提供理论指导。  相似文献   

7.
光纤陀螺的噪声及其实验分析   总被引:1,自引:0,他引:1  
龚智炳  郭栓运 《应用光学》1991,12(5):46-49,42
通过对FOG-110-I全光纤陀螺仪样机的研制,分析了光纤陀螺的噪声源,并对信号光背向反馈进入激光器引起的强度噪声和由光纤PZT位相调制器引起的幅度调制对光纤陀螺系统的影响作了重点分析。最后,给出了FOG-110-I全光纤陀螺样机的测试结果和实验分析。  相似文献   

8.
李彦  张春熹  欧攀  徐宏杰 《光学技术》2006,32(6):893-895
以Y波导集成光学调制器保偏型干涉式光纤陀螺作为研究对象,根据各光学元器件的参数建立了各器件的琼斯矩阵以及光路传输模型,在此基础上进行了光路偏振误差的理论分析。通过推导,得到了保偏型干涉式光纤陀螺的偏振误差表达式,并首次分析了光源偏振度对光纤陀螺零漂的影响。借助光源尾纤输出的光谱,对由0%~3%之间呈线性变化的偏振度以及对经实验测试的光源偏振度的实际值引起的偏振模式耦合误差的零漂值进行了仿真计算。结果表明,当光路中其它参数不变时,由光源偏振度变化引起的零漂值为0.001°/h,满足了高精度光纤陀螺的精度要求。  相似文献   

9.
肖文  伊小素 《光子学报》2007,36(1):43-46
在相位调制器基础上,提出了围绕干涉型光纤陀螺的闭环控制方案.对高准确度光纤陀螺中Y波导集成光学器件的调制特性及系统测试方法进行了研究,对其应用及光路各环节配合的技术进行了探讨,对该器件在光纤陀螺系统中的特性和测试系统进行讨论.在高准确度光纤陀螺中取得明显效果.目前,工程样机的零偏稳定性已达到0.02°/h.  相似文献   

10.
谐振式光纤陀螺系统中,背向散射噪声成为制约其系统精度的重要因素之一.对陀螺双路系统其中一路光波信号进行研究,利用相位调制频谱展开及光场叠加的方法,对光纤环形谐振腔输出光场进行理论分析.理论上载波分量的出现会在系统中引入背向散射噪声,因此仿真分析引入载波分量的幅度,得到采用三角波调制比正弦波更有利于抑制载波分量.以抑制载波分量为目标,搭建自外差载波抑制测试平台,对相位调制器施加三角波与正弦波两种波形调制,得到采用三角波调制时载波抑制比最高可达64.3dB,比正弦波调制时高出6dB,与理论分析相符;在陀螺系统应用中,采用三角波调制时陀螺输出信号载波抑制程度更大,波动更小,更加稳定.  相似文献   

11.
干涉式光纤陀螺光路偏振特性的理论分析   总被引:3,自引:0,他引:3  
王新  陈淑芬  方伟 《光学技术》2005,31(2):187-189
首次采用琼斯矩阵建立了消偏型干涉式光纤陀螺完整光路传输系统的数学模型。在此基础上进行了光路偏振特性的理论分析,讨论了各器件的性能对陀螺偏振噪声的影响,分析了光纤消偏器的消偏作用。通过分析计算,得到了消偏型干涉式光纤陀螺的最大偏振误差表达式。在不同精度级别的消偏型光纤陀螺中,计算出了光纤消偏器应该达到的精度要求,为今后减小零漂打下了理论基础。  相似文献   

12.
数字光纤陀螺的第二反馈回路实验研究   总被引:1,自引:0,他引:1  
针对光纤陀螺受外界环境,主要是温度影响,提出了一种控制相位调制器长期漂移的方法。用数字光纤陀螺的第二个反馈回路来控制相位调制通道的增益,尤其是2π复位来控制相位调制器相应的长期漂移。在-40°C~60°C,将标度因子的稳定性控制在0.000 4以内。在陀螺解调电路中采用FPGA进行数字信号处理,实现了两级反馈环路。  相似文献   

13.
王建飞  王潇  罗洪  孟洲 《物理学报》2012,61(15):150701-150701
偏振诱导信号衰落现象的抑制是干涉型光纤传感系统的关键技术之一. 针对法拉第旋镜(FRM)法抑制偏振诱导信号衰落技术的残留偏振相位噪声问题进行了深入的理论和实验研究. 运用琼斯矩阵法建立了基于法拉第旋镜的干涉型光纤传感系统偏振相位噪声的理论模型; 分析了影响系统偏振相位噪声的主要原因: 法拉第旋镜的旋光角度偏差、入射光偏振态调制度、干涉仪两臂光纤双折射; 提出了相应的抑制偏振相位噪声的方法. 详细仿真分析了入射光偏振态调制度对干涉型光纤传感系统偏振相位噪声的影响, 仿真分析得出若法拉第旋镜旋光角度偏差为最大工艺制造误差1°, 当入射光偏振态调制度为1.84 rad时, 系统可能出现的最大偏振相位噪声为0.0815 rad. 最后, 搭建了基于M-Z型偏振态调制器的偏振相位噪声测试系统, 测试了在传输光纤受到外界偏振扰动的情况下, 干涉传感系统存在的偏振相位噪声, 实验测试结果与理论分析结果基本一致, 有力地证明了该偏振相位噪声理论分析模型的正确性.  相似文献   

14.
双芯高双折射光子晶体光纤耦合特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
付博  李曙光  姚艳艳  张磊  张美艳  刘司英 《物理学报》2009,58(11):7708-7715
设计了一种双芯高双折射光子晶体光纤,采用多极法(multipole method)和光纤的模式耦合理论研究了光纤的双折射、耦合长度以及色散特性.数值研究发现,对于空气孔节距 Λ=1.2 μm,空气孔直径d=1.0 μm的光纤,在1.55 μm处双折射度为1.24×10-2;对应x偏振模的耦合长度为21.6 μm,对应y偏振模的耦合长度为24.3 μm. 这种具有高保偏度和极短耦合长度的双芯光子晶体光纤对于微型光子器件的研制具有重 关键词: 光子晶体光纤 双芯 双折射 耦合长度  相似文献   

15.
基于光纤的光学频率传递研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杰  高静  许冠军  焦东东  闫露露  董瑞芳  姜海峰  刘涛  张首刚 《物理学报》2015,64(12):120602-120602
随着光钟研究的发展, 光钟的稳定度和不确定度均达到10-18量级. 通过光纤可以实现光钟频率信号的高精度传输, 有望用于未来“秒”定义的复现. 演示了百公里级实验室光纤上的光学频率传递. 对于在实验室70 km光纤盘上实现的光频传递, 光纤相位噪声抑制在1-250 Hz傅里叶频率范围内均接近于光纤延时极限, 对应传输稳定度(Allan偏差)为秒级稳定度1.2×10-15, 10000 s稳定度为1.4×10-18. 实验室100 km光纤的光频传递秒级稳定度也达到了5×10-15. 提出了光纤噪声用户端补偿的方案, 可以简化星形传递网络中心站的复杂度. 在25 km光纤上演示了该传递方案, 实现的传输稳定度接近传统前置补偿传递方案.  相似文献   

16.
提出了一种基于开关键控(OOK)调制的光载太赫兹正交相移键控(QPSK)信号产生方案。基于双平行马赫-曾德尔调制器产生了一对光学八倍频边带信号,利用两个强度调制器分别将两路独立的OOK基带信号调制到八倍频边带的两个偏振态上,对两路偏振信号进行相位和幅度调整后再进行叠加,叠加后的光信号经过功率放大和光纤传输后在终端实现了光电转换,从而生成了太赫兹QPSK信号。在VPI仿真环境下,分别验证了80,240,400 GHz信号的传输性能。结果表明,生成的一个波特率为20 GBuad、频率为400 GHz的QPSK信号通过40 km的零色散位移光纤传输后,其误码率低于前向纠错码的阈值(3.8×10-3)。该方案具有无需预编码技术和数模转换器的特点,降低了信号处理的复杂度和系统成本。  相似文献   

17.
对轴误差对光纤陀螺输出的影响   总被引:4,自引:2,他引:2  
杨学礼  王学锋  张蔚  徐鹏 《光子学报》2009,38(7):1658-1661
理论分析并试验研究了Y波导保偏尾纤与保偏光纤线圈之间熔接点的对轴误差对光纤陀螺输出的影响.根据简化的光纤陀螺光路误差模型,对光纤陀螺的输出相位误差与光路中主要耦合点的对轴误差的关系进行了理论推导和仿真分析,并利用一个实际的闭环光纤陀螺试验研究了主要熔接点的对轴误差变化对光纤陀螺零偏和零偏稳定性的影响.结果表明,Y波导保偏尾纤与保偏光纤线圈之间的对轴误差是引起光纤陀螺输出误差的重要因素,必须尽量减小.  相似文献   

18.
一种新型高双折射光子晶体光纤   总被引:2,自引:0,他引:2       下载免费PDF全文
张晓娟  赵建林  侯建平 《物理学报》2007,56(8):4668-4676
提出了一种新的高双折射光子晶体光纤结构.应用全矢量频域有限差分方法所做的数值分析表明:该结构光纤基模的两个正交偏振态不再简并,其模式呈现很强的线偏振特性,并且模式双折射与结构参数设置有密切关系.通过选择合适的结构参数,可以使之达到10-2量级,比传统的D型和熊猫型保偏光纤高出2个数量级.合理设计光纤包层的几何结构,可以取得理想的色散效果.这种结构的光子晶体光纤可用于制作具有适当色散特性或偏振特性的保偏光纤及相关光纤器件. 关键词: 光子晶体光纤 模式双折射 偏振特性 频域有限差分法  相似文献   

19.
提出一种以新型聚合物Topas作为基底材料的类摩天轮型多孔芯光子晶体光纤。利用时域有限差分法对光纤的双折射率、损耗及色散等特性进行数值模拟。结果表明:该光纤在3~6 THz的工作频段内可提供10-1数量级的双折射率,在4 THz处达到0.1085的超高双折射率、10-1 dB/cm的总损耗、10-16 dB/cm的极低限制损耗和2.4×10-14 dB/cm的低弯曲损耗;该光纤在3~5.5 THz频率范围内拥有近零色散值,为±0.11 THz-2·cm-1。该光纤的良好特性对太赫兹光器件以及偏振传感等领域的发展具有促进作用。  相似文献   

20.
针对基于宽谱光源的谐振式光纤陀螺(resonant fiber optic gyroscope, RFOG)中Y波导调制器半波电压的温度影响,开展了Y波导温致半波电压特性对谐振式光纤陀螺影响的研究。建立了Y波导温致半波电压特性对基于宽谱光源的谐振式光纤陀螺系统标度因素的影响规律模型,模型表明:Y波导调制器的温致半波电压特性会导致基于宽谱光源的谐振式光纤陀螺系统的标度因素发生变化。搭建了用于宽谱光源的Y波导调制器半波电压测试系统,系统测试精度达1 mV。实验测试了全温范围内Y波导的温致半波电压特性在基于宽谱光源的谐振式光纤陀螺系统中的影响,测试结果表明:Y波导调制器的半波电压与温度呈线性负相关;Y波导调制器的温致半波电压特性导致基于宽谱光源的谐振式光纤陀螺系统的标度因素的最大相对变化误差为1 266.01×10-6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号