首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

The effect of initial orientation on twinning micro-mechanisms during tensile deformation of commercially pure titanium has been studied using micro focus X-ray diffraction and electron back scatter diffraction (EBSD) in a scanning electron microscope. Three orientations A, B and C obtained from a rolled and annealed block of commercially pure titanium were deformed in uniaxial tension till failure and the tested specimens were characterised with regard to bulk texture, microstructure and crystal orientation mapping using EBSD. Orientation B along the transverse direction in ND-TD plane exhibits higher strength and lower strain hardening compared to orientations A and C along the rolling direction in TD-RD and ND-RD plane, respectively. This is attributed to different texture of sample B compared to samples A and C leading to dissimilar twinning micro-mechanisms and characteristic variation in nature of twinning. It is observed that limited twin nucleation and prominent lateral growth plays a dominant role in orientation B while multiple twin nucleation with significant non-Schmid behaviour is dominant for the other two orientations. It is proposed from this study that conventional factors associated with twin formation like Schmid factor play a main role in twin nucleation and propagation, however, growth or lateral thickening of the twins is explained by elastic stiffness variation across twins and their parent grains.  相似文献   

2.
Ti–6Al–4V (Ti64) plates were subjected to rolling at 600°C and 800°C, respectively, for reductions up to 90% reduction in thickness. The mechanism of texture and microstructure evolution during rolling was studied in the present study. Extension twins of coherent nature were observed in the samples rolled up to 50% of reduction. The deformation was relatively inhomogeneous in the samples rolled at 600°C compared to that at 800°C. Visco-plastic self-consistent (VPSC) simulation showed that relative activity of pyramidal <c+a> slip was higher during rolling at 800°C compared to that at 600°C. The average activity of slip systems per grain was less than five for the samples rolled at 600°C and this might be responsible for the strain heterogeneity in the large grains. Further, twinning activity was found to be limited to a true strain of 0.5, as supported by the microstructural observation. VPSC simulation also showed the presence of contraction twins in the samples which was further supported by X-ray texture measurement. Dominant basal texture was observed in the samples irrespective of the temperature of rolling.  相似文献   

3.
R. Kalsar  R. Madhavan  R. K. Ray 《哲学杂志》2020,100(16):2143-2164
ABSTRACT

The evolution of deformation texture and microstructure in commercially pure Al (cp-Al) and two Al–Mg alloys (Al–4Mg and Al–6Mg) during cold rolling to a very large strain (true strain εt? ≈?3.9) was investigated. The development of deformation texture in cp-Al, after rolling, can be considered as pure metal or Copper-type, which is characterised mainly by the presence of Cu {112}<111>, Bs {110}<112> and S {123}<634> components. The deformation microstructure clearly indicates that deformation mechanism in this case remains slip dominated throughout the deformation range. In the Al–4Mg alloy, the initial slip mode of deformation is finally taken over by mechanism involving both slip and Copper-type shear bands, at higher deformation levels. In contrast, in the Al–6Mg alloy, the slip and twin mode of deformation in the initial stage is replaced by slip and Brass-type shear bands at higher deformation levels. Although a Copper-type deformation texture forms in the two Al–Mg alloys at the initial stage of deformation, there is a significant increase in the intensity of the Bs component and a noticeable decrease in the intensity of the Cu component at higher levels of deformation, particularly in the Al–6Mg alloy. This phenomenon indicates the possibility of transition of the deformation texture from Cu-type to Bs-type, which is concurrent with the addition of Mg. Using visco-plastic self-consistent modelling, the evolution of deformation texture could be simulated for all three materials.  相似文献   

4.
Yanyu Liu  Feng Zhang  Zheng Liu  Zhi Wang 《哲学杂志》2018,98(12):1068-1086
In order to investigate the effect of temperature on the anisotropic behaviour of AZ31 magnesium alloy rolling sheet under high strain rate deformation, the Split Hopkinson Pressure Bar was used to analyse the dynamic mechanical properties of AZ31 magnesium alloy rolling sheet in three directions, rolling direction(RD), transverse direction (TD) and normal direction (ND). The texture of the rolling sheet was characterised by X-ray analysis and the microstructure prior and after high strain rate deformation was observed by optical microscope (OM). The results demonstrated that AZ31magnesium alloy rolling sheet has strong initial {0?0?0?2} texture, which resulted at the obvious anisotropy in high strain rate deformation at 20 °C. The anisotropy reflected in stress–strain curve, yield stress, peak stress and microstructure. The anisotropy became much weaker when the deformation temperature increased up to 250 °C. Continuing to increase the deformation temperature to 350 °C the anisotropy of AZ31 rolling sheet essentially disappeared. The decreasing tendency of anisotropy with increasing temperature was due to the fact that when the deformation temperature increased, the critical resolved shear stress (CRSS) for pyramidal 〈c + a〉 slip, which was the predominant slip mechanism for ND, decreased close to that of twinning, which was the predominant deformation mechanism for RD and TD. The deformation mechanism at different directions and temperatures and the Schmid factor (SF) at different directions were discussed in the present paper.  相似文献   

5.
Surface roughening in uniaxially tensile specimens of commercially pure titanium VT1-0 has been investigated using electron backscatter diffraction, optical and atomic force microscopy, and numerical simulation. It is shown that intragranular slip leads to the rotation of surface grains, due to which the grain surface is inclined and a terrace is formed at the interface with neighboring grains. The effect of the crystallographic grain orientation on the grain shape change and the degree of grain rotation occurring under constrained plastic deformation is demonstrated.  相似文献   

6.
An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323?K (50°C), 423?K (150°C), and 523?K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323?K (50°C), extension twinning, basal, prismatic ?a?, and pyramidal ?c?+?a? slip were active. Much less extension twinning was observed at 423?K (150°C), while basal slip and prismatic ?a? slip were dominant and presented similar activities. At 523?K (250°C), twinning was not observed, and basal slip controlled the deformation.  相似文献   

7.
S. Liu  H. Guo  S. Yang  X. Wang 《哲学杂志》2018,98(11):934-958
We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0}<1 1 1> and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.  相似文献   

8.
J.B. Liu  X.H. Liu  W. Liu 《哲学杂志》2013,93(31):4033-4044
The formation of deformation twins in twinning-induced plasticity steels was observed in transmission electron microscope by an ex situ tensile test. The twinning process initially includes formation of extended dislocations at primary slip plane, then cross-slip to a conjugate slip plane with dissociation of the leading partial into a stair-rod dislocation and an emitted partial, and finally un-faulting of the original faults and formation of Frank partials. Repetition of the operation of the process on successive conjugate planes results in the formation of deformation twins. The formation mechanism of deformation twins can thus be explained by improving the stair-rod cross-slip model.  相似文献   

9.
李洪佳  孙光爱  龚建  陈波  王虹  李建  庞蓓蓓  张莹  彭述明 《物理学报》2014,63(23):236101-236101
密排六方结构的Zr呈现弹塑性各向异性,轧制工艺会使材料内部产生晶间应力.准确地评估Zr合金内部的晶间应力分布并明确其微观形变机制,对其服役能力和使用寿命的准确评判具有重要的科学意义和应用价值.利用中子原位衍射技术结合弹塑性自洽(EPSC)模拟分析了Zr-4合金的压缩形变行为,加载方式为沿轧板厚度方向压缩.研究中辅以非原位的背散射电子衍射测试进行织构演化分析及透射电镜(TEM)测试分析缺陷形态.EPSC模拟可以定量地给出不同形变量下的形变机制,并且计算结果可由TEM实验佐证.研究表明:当形变量较小(0.55%)时,柱面{10ˉ10}?11ˉ20?(?a?型)滑移起主导作用;随着塑性形变量的增加,锥面滑移的作用增强,且锥面{10ˉ11}?11ˉ23?(?c+a?型)滑移的作用大于柱面{10ˉ10}?11ˉ20?(?a?型)滑移,少量的锥面{10ˉ11}?11ˉ20?(?a?型)和{10ˉ12}?11ˉ20?(?a?型)滑移也存在.  相似文献   

10.
11.
The crystallographic texture of metallic materials has a very strong effect on the properties of the materials. In the present article, we look at the rolling textures of fcc metals and alloys, where the classical problem is the existence of two different types of texture, the “copper-type texture” and the “brass-type texture.” The type of texture developed is determined by the stacking fault energy of the material, the rolling temperature and the strain rate of the rolling process. Recent texture simulations by the present authors provide the basis for a renewed discussion of the whole field of fcc rolling texture. We simulate the texture development with a model which allows us to vary the strength of the interaction between the grains and to vary the scheme for the calculation of the lattice rotation in the individual grains (type CL/MA or PR/PSA). For the deformation pattern we focus on {111}<110> slip without or with deformation twinning, but we also consider slip on other slip planes and slip by partial dislocations. We consistently make quantitative comparison of the simulation results and the experimental textures by means of a scalar correlation factor. We find that the development of the copper-type texture is best simulated with {111}<110> slip combined with type CL/PR lattice rotation and relatively strong interaction between the grains — but not with the full-constraint Taylor model and neither with the classical relaxed-constraint models. The development of the brass-type texture is best simulated with {111}<110> slip combined with PR/PSA lattice rotation and weak interaction between the grains. The possible volume effect of deformation twins on the formation of the brass-type texture is a controversial question which we discuss on the basis of our simulations as seen together with other investigations.  相似文献   

12.
The tension and tensile-creep deformation behaviours of a fully-α phase commercially pure (CP) Ti and a near-α Ti–5Al–2.5Sn(wt.%) alloy deformed in situ inside a scanning electron microscope were compared. Tensile tests were performed at 296 and 728?K, while tensile-creep tests were performed at 728?K. The yield stress of CP Ti decreased dramatically with increasing temperature. In contrast, temperature had much smaller effect on the yield stress of Ti–5Al–2.5Sn(wt.%). Electron backscattered diffraction was performed both before and after the deformation, and slip trace analysis was used to determine the active slip and twinning systems, as well as the associated global stress state Schmid factors. In tension tests of CP Ti, prismatic slip was the most likely slip system to be activated when the Schmid factor exceeded 0.4. Prismatic slip was observed over the largest Schmid factor range, indicating that the local stress tensor varies significantly from the global stress state of uniaxial tension. The basal slip activity in Ti–5Al–2.5Sn(wt.%) was observed in a larger faction of grains than in CP Ti. Pyramidal ?c?+?a? slip was more prevalent in CP Ti. Although twinning was an active deformation mode in tension tests of the CP Ti, it was rare in Ti–5Al–2.5Sn(wt.%). During creep, dislocation slip was the primary apparent deformation mechanism in CP Ti, while evidence for dislocation slip was much less apparent in Ti–5Al–2.5Sn(wt.%), where grain boundary sliding was dominant. A robust statistical analysis was carried out to assess the significance of the comparative activity of the different slip systems under the variety of experimental conditions examined.  相似文献   

13.
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10~(-4)s~(-1)to 1 s~(-1), the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n_2and n_1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.  相似文献   

14.
Microstructural evolution due to equal-channel angular-pressing (ECAP) with increasingly severe deformation was investigated in a commercially pure 1200 aluminum alloy. A true strain of eight produced sub-micrometer scale grains and very fine subgrains in the grain interior. The deformation process was documented and described using field-emission (FEG) gun scanning and transmission electron microscopy techniques. After eight ECAP passes, the high-angle grain boundaries accounted for approximately 70% of all boundaries. The fine spacing resolution of FEG scanning electron microscopy allowed detailed grain and subgrain statistical evaluation in the deformed microstructure; transmission electron microscopic inspection afforded appreciation of the role of very low-angle misorientation boundaries in the microstructure-refining process. ECAP results were compared with those produced by cold rolling. The material's texture evolved in a decreasing trend of Cube {001}100 intensities in favor of Cube rotated toward the normal-to-pressing direction {001}120, while Goss {110}001 and {111}110, {111}112 directions slightly increased with strain.  相似文献   

15.
The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning.  相似文献   

16.
The formation of dislocation cells has a significant impact on the strain hardening behaviour of metals. Dislocation cells can form in metals with a characteristic size defined by three-dimensional tangles of dislocations that serve as “walls” and less dense internal regions. It has been proposed that inhibiting the formation of dislocation cells could improve the strain hardening behaviour of metals such as Al. Here we employ in situ scanning electron microscope compression testing of pure Al single crystal pillars with physical dimensions larger, close to and smaller than the reported cell size in Al, respectively, to investigate the possible size effect on the formation of dislocation cell and the consequent change of mechanical properties. We observed that the formation of dislocation cells is inhibited as the pillar size decreases to a critical value and simultaneously both the strength and the strain hardening behaviour become strongly enhanced. This phenomenon is discussed in terms of the effect of dimensional restriction on the formation of dislocation cells. The reported mechanism could be applied in polycrystalline Al where the tunable physical dimension could be grain size instead of sample size, providing insight into Al alloy design.  相似文献   

17.
Diamond anvil cells may not only impose pressure upon a sample but also a compressive stress that produces elastic and plastic deformation of polycrystalline samples. The plastic deformation may result in texture development if the material deforms by slip or mechanical twinning, or if grains have a non-equiaxed shape. In radial diffraction geometry, texture is revealed by variation of intensity along Debye rings relative to the compression direction. Diffraction images (obtained by CCD or image plate) can be used to extract quantitative texture information. Currently the most elegant and powerful method is a modified Rietveld technique as implemented in the software package MAUD. From texture data one can evaluate the homogeneity of strain in a diamond anvil cell, the strain magnitude and deformation mechanisms, the latter by comparing observed texture patterns with results from polycrystal plasticity simulations. Some examples such as olivine, magnesiowuestite, MgSiO(3) perovskite and ε-iron are discussed.  相似文献   

18.
The deformation behaviour of an α + β Ti–6Al–4V (wt.%) alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Tensile experiments were performed at 296 and 728 K (~0.4Tm), while a tensile-creep experiment was performed at 728 K and 310 MPa (σ/σys = 0.74). The active deformation systems were identified using electron backscattered diffraction-based slip-trace analysis and SEM images of the specimen surface. The distribution of the active deformation systems varied as a function of temperature. Basal slip deformation played a major role in the tensile deformation behaviour, and the relative activity of basal slip increased with increasing temperature. For the 296 K tension deformation, basal slip was less active than prismatic slip, whereas this was reversed at 728 K. Twinning was observed in both the 296 and 728 K tension experiments; however, no more than 4% of the total deformation systems observed was twins. The tension-creep experiment revealed no slip traces, however grain boundary ledge formation was observed, suggesting that grain boundary sliding was an active deformation mechanism. The results of this work were compared with those from previous studies on commercially pure Ti, Ti–5Al–2.5Sn (wt.%) and Ti–8Al–1Mo–1V (wt.%), and the effects of alloying on the deformation behaviour are discussed. The relative amount of basal slip activity increased with increasing Al content.  相似文献   

19.
N.P. Gurao 《哲学杂志》2013,93(5):798-817
The large-strain deformation of nanocrystalline nickel was investigated at room temperature and cryogenic (liquid N2) temperature. Deformation mechanisms ranging from grain boundary sliding to slip, operate due to a wide distribution of grain sizes. These mechanisms leave their finger print in the deformation texture evolution during rolling of nanocrystalline nickel. The occurrence and severance of different mechanisms is understood by a thorough characterization of the deformed samples using X-ray diffraction, X-ray texture measurements, electron back-scattered diffraction and transmission electron microscopy. Crystal plasticity-based viscoplastic self-consistent simulations were used to further substantiate the experimental observations. Thus, a comprehensive understanding of deformation behavior of nanocrystalline nickel, which is characterized by simultaneous operation of dislocation-dominated and grain boundary-mediated mechanisms, has been developed.  相似文献   

20.
The time-of-flight neutron diffraction technique and the elastoplastic self-consistent model were used to study the behaviour of single and multi-phase materials. Critical resolved shear stresses and hardening parameters in austenitic and austenitic–ferritic steels were found by analysing the evolution of the lattice strains measured during tensile tests. Special attention was paid to the changes of the grain stresses occurring due to transition from elastic to plastic deformation. Using a new method of data analysis, the variation of the stress localisation tensor as a function of macrostress was measured. The experimental results were successfully compared with model predictions for both phases of the duplex steel and also for the austenitic sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号