首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC issuppressed due to the enhancing R weakening the Kondo resonance.On the contrary, in the large AB ring, with R increasing, the peakof PC firstly moves up to max-peak and then down. Especially, the PCphase shift of ø appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch.  相似文献   

2.
The T=0 transport properties of a wire interacting with a lateral two-level quantum dot are studied by using an exact numerical calculation. The wire conductance, the spin–spin correlation and the Kondo temperature are obtained as a function of the dot level energy spacing. When the dot has two electrons and spin SD1, the wire current is totally quenched by the S=1 Kondo effect. The Kondo temperature is maximum at the singlet–triplet transition and its dependence upon the dot energy spacing follows a non-universal scaling law.  相似文献   

3.
牛鹏斌  王强  聂一行 《中国物理 B》2013,22(2):27307-027307
The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion(S=5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with(2S+1) sublevels.In the sequential tunneling regime,the differential conductance exhibits(2S+1) possible peaks,corresponding to resonance tunneling via(2S+1) sublevels.At low temperature,Kondo physics dominates transport and(2S+1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.  相似文献   

4.
We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.  相似文献   

5.
We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AIR) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a carldidate for quantum switch.  相似文献   

6.
We have fabricated a vertical quantum dot with lateral coupling, modulated by a split gate voltage, to a two-dimensional electron. We thereby control not only electron configurations but also the strength of coupling between the dot and the lateral lead, by applying gate voltages. We have measured the conductance enhancement when the applied bias exceeds the single-electron excitation energy, in the Coulomb blockade regime. This conductance enhancement disappears as the split gate voltage decreases (reducing the coupling). This indicates that this enhancement is caused by inelastic co-tunneling. Furthermore, we observed a conductance enhancement at zero source–drain bias with stronger coupling. An anomaly is observed that we attribute to Kondo resonance between the dot and the leads.  相似文献   

7.
We use the spin non-degenerate single impurity Anderson model to investigate the influence of the local spin polarization to the Kondo effect. By using the Schrieffer-Wolff transformation, we obtain a generalized s-d exchange Hamiltonian, which describes the interaction between a polarized local spin and conduction electrons. In this case, the singlet is no longer an eigenstate as shown by variational calculations where the splitting of the local energy Δ = ɛ dɛ d can be arbitrarily small. The local spin polarization generates the instability of the singlet ground state of the S = 1/2 s-d exchange model.   相似文献   

8.
Electronic transport through parallel coupled double quantum dots (DQD) with Rashba spin-orbit (RSO) interaction is investigated in Kondo regime by means of the slave-boson mean field approximation at zero temperature. By the co-action of the phase factor deduced by RSO interaction and the magnetic flux penetrating the parallel DQD, an interesting spin-dependent Kondo effect emerges. The molecular state representation theory is used to obtain a detailed understanding of the spin-dependent Kondo effect. It is shown that Quantum interference between the bonding Kondo state and antibonding state, which is modulated by the RSO interaction, plays a crucial role to the density of states and the linear conductance. The magnitude of each spin component conductance can be modulated by the RSO interaction strength. The conductance of each spin component exhibits 4π-periodic function with respect to φR. Moreover, the swap operation in the parallel DQD system can be implemented by tuning the RSO interaction.  相似文献   

9.
We consider electron transport through quantum dots with large level spacing and charging energy. At low temperature and strong coupling to the leads, quantum fluctuations and the Kondo effect become important. They show up, e.g., as zero-bias anomalies in the current–voltage characteristics. We use a recently developed diagrammatic technique as well as a new real-time renormalization-group approach to describe charge and spin fluctuations. The latter gives rise to a Kondo-assisted enhancement of the current through the dot as seen in experiments.  相似文献   

10.
利用平均场近似理论,研究了一个嵌入T型弱耦合双量子点的介观环系统的基态性质. 结果表明,体系中复杂的基态性质源于Kondo效应与Fano效应相互竞争. 当介观环的尺寸达到足以产生完全Kondo共振时,随双量子点间耦合强度的增强,尖锐的持续电流峰出现了,且越发显著,这说明体系中存在着显著的Fano 效应. 但介观环的Kondo共振持续电流峰值却几乎不发生变化,这为测定Kondo 屏蔽云提供了一个新的可能模型. 关键词: 耦合量子点 持续电流 Kondo效应 Fano 效应  相似文献   

11.
We theoretically study an enhancement of the Kondo effect in quantum dots with two orbitals and spin . The Kondo temperature and conductance are evaluated as functions of energy difference Δ between the orbitals, using the numerical renormalization group method. The Kondo temperature is maximal around the degeneracy point (Δ=0) and decreases with increasing |Δ| following a power law, TK(Δ)=TK(0)(TK(0)/|Δ|)γ, which is consistent with the scaling analysis. The conductance at T=0 is almost constant 2e2/h. Both the orbitals contribute to the conductance around Δ=0, whereas the current through the upper orbital is negligibly small when |Δ|TK(0). These are characteristics of SU(4) Kondo effect.  相似文献   

12.
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.  相似文献   

13.
We analyze the conductance ( ) of a quantum dot (QD) in an AC potential at finite temperature. The Friedel–Langreth sum rule (FLSR) is generalized to include the effect of an AC potential and finite T. We have solved the Anderson Hamiltonian by means of a self-consistent procedure which fulfills the generalized FLSR. New features are found in the density of states (DOS) and in when an AC voltage is applied. Our model describes the effect of an AC potential on the transition from Kondo regime to a Coulomb-blockade behaviour as T increases.  相似文献   

14.
We study the one-dimensional anisotropic Kondo necklace model at zero temperature through White's density matrix renormalization group technique. The ground state energy and the spin gap were calculated as a function of the exchange parameter for two anisotropy values. We found a finite critical point separating a Kondo singlet from an antiferromagnetic phase. The transition is highly congruent with a Kosterlitz–Thouless form. We observed that the critical point increases with the anisotropy.  相似文献   

15.
张平  薛其坤  谢心澄 《物理》2004,33(4):238-241
从理论上研究了相互作用量子点在外部旋转磁场下的非平衡自旋输运性质,研究结果表明,量子点中的相干自旋振荡可以导致自旋电流的产生,当计入库仑关联相互作用后,近藤共振效应受外部进动磁场的影响很强,特别是当磁场的进动频率与塞曼能移满足共振条件时,每个自旋近藤峰就会劈裂为两个自旋共振峰的叠加,在低温强耦合区,这种近藤型共隧穿过程对自旋电流带来重要贡献。  相似文献   

16.
Quantum corrals present interesting properties due to the combination of confinement and, in the case of elliptical corrals, to their focalizing properties. We study the case when two magnetic impurities are added to the non-interacting corral, where they interact via a superexchange AF interaction J with the surface electrons in the ellipse. Previous results showed that, when both impurities are located at the foci of the system, they experience an enhanced magnetic interaction, as compared to the one they would have in an open surface. For small J and even filling, they are locked in a singlet state, which weakens for larger values of this parameter. When J is much larger than the hopping parameter of the electrons in the ellipse, both spins decorrelate while forming a local singlet with the electrons of the ellipse, thus presenting a confined RKKY–Kondo transition.We interpret this behaviour by means of the von Neumann entropy between the localized impurities and the itinerant electrons of the ellipse: for small J the entropy is nearly zero while for large J it is maximum. In addition, the local density of states provides us with a concrete experimental tool for detecting the Kondo regime.  相似文献   

17.
使用双杂质Anderson模型的哈密顿,从理论上研究了一个嵌入并联耦合双量子点介观环系统 , 当处在Kondo区时的基态性质, 并用slave-boson平均场方法求解了哈密顿.研究的结果表 明, 在这个系统中,当两个量子点处于强耦合时,两个量子点可以相干耦合成一个人造分 子,导致一个增强的Kondo效应和超强持续电流的出现.因此,在未来的纳米装置应用中,这 个系统具有潜在的应用价值. 关键词: 并联耦合双量子点 Kondo效应 超强持续电流  相似文献   

18.
The Kondo effect and the Andreev reflection tunneling through a normal (ferromagnet)-double quantum dots-superconductor hybrid system is examined in the low temperature by using the nonequilibrium Green's function technique in combination with the slave-boson mean-field theory. The interplay of the Kondo physics and the Andreev bound state physics can be controlled by varying the interdot hopping strength. The Andreev differential conductance is mainly determined by the competition between Kondo states and Andreev states. The spin-polarization of the ferromagnetic electrode increases the zero-bias Kondo peak. The spin-flip scattering influences the Kondo effect and the Andreev reflection in a nontrivial way. For the ferromagnetic electrode with sufficiently large spin polarization, the negative Andreev differential conductance is found when the spin flip strength in the double quantum dots is sufficiently strong.  相似文献   

19.
张荣  楚卫东  段素青  杨宁 《中国物理 B》2013,22(11):117305-117305
We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle.Employing the equation of motion method for the nonequilibrium Green’s function,we show that the oscillation of the dot,i.e.,the time-dependent coupling between the dot’s electron and the reservoirs,can destroy the Kondo effect.With the increase in the oscillation frequency of the dot,the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern.Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states.Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.  相似文献   

20.
In this work for the first time, we are reporting the unusual observation of the Kondo effect with the coexistence of room temperature ferromagnetism in AlN/Al/AlN trilayer thin film. The grown film shows resistivity minimum at a temperature of ∼48K, which shifts to the lower temperature on the application of magnetic fields. After considering various possibilities for an upturn in resistivity, we found that the Kondo scattering is responsible for upturn at low temperature. The simultaneous presence of ferromagnetism and Kondo scattering is explained by spatial variation of nitrogen vacancy defects from the film surface to the Al sandwich layer. Furthermore, magneto-transport properties of the film measured at different temperature exhibits both negative and positive components described by localized magnetic moment model for the spin scattering of carriers and two-band model, respectively. This work provides insight into the novel co-existence of ferromagnetism and Kondo effect in crystalline AlN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号