首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved.  相似文献   

2.
The undoped and Al-doped ZnO nanostructures were fabricated on the ITO substrates pre-coated with ZnO seed layers using the hydrothermal method. The undoped well-aligned ZnO nanorods were synthesized. When introducing the Al dopant, ZnO shows various morphologies. The morphology of ZnO changes from aligned nanorods, tilted nanorods, nanotubes/nanorods to the nanosheets when the Al doping concentrations increase. The ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and Raman technology. The Al doping concentrations play an important role on the morphology and optical properties of ZnO nanostructures. The possible growth mechanism of the ZnO nanostructures was discussed.  相似文献   

3.
Boron nitride (BN) nanotubes, nanohorns, nanocoils were synthesized by annealing Fe4N and B powders at 1000 °C for 1 h in nitrogen gas atmosphere. Especially, Fe-filled BN nanotubes were produced, and investigated by high-resolution electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy, which indicates that the [110] of Fe is parallel to the BN nanotube axis. Formation mechanism of Fe-filled BN nanotube was speculated based on these results.  相似文献   

4.
We report the synthesis and structural characterization of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) nanotubes prepared by a novel sol-gel template method. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 °C for 1 h) PMN-PT nanotubes were polycrystalline with perovskite crystal structure. The field emission scanning electron microscope (FE-SEM) shows that as prepared PMN-PT nanotubes were hollow with diameter to be about 200 nm. High resolution transmission electron microscope (HRTEM) analysis confirmed that the obtained PMN-PT nanotubes made up of nanoparticles (10-20 nm) which were randomly aligned in the nanotubes. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the stoichiometric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3. The possible formation mechanism of PMN-PT nanotubes was proposed at the end.  相似文献   

5.
Dye-sensitized solar cells (DSSCs) based on a novel composite photoanode of TiO2 nanoparticles coating on electrodeposited ZnO nanotube arrays are fabricated and characterized. An efficiency of 3.94 % is achieved for the composite cell, increasing 86.7 % than 2.11 % of the ZnO nanotubes cell. The short-circuit current (J sc) and open-circuit voltage (V oc) are also enhancing 52.9 % and 25.3 %, respectively. The improvements are because of the high surface area of TiO2 nanoparticles, as well as fast electron transport and light scattering effect of ZnO nanotubes.  相似文献   

6.
A novel and facile method for effective immobilization of Ru(bpy)32+ within titanate nanotubes (TiNTs) and its application as a sensitive solid-state electrochemiluminescence (ECL) sensor material was studied. The process involved the formation of Ru(bpy)32+-titanate nanotube nanocomposite (Ru-TiNTs) via electrostatic interactions by mixing TiNTs and Ru(bpy)3(ClO4)2 in aqueous medium. Then Ru-TiNTs were attached to the surface of a Pt electrode to form an ECL sensor. Characterization of Ru(bpy)32+-titanate nanotube nanocomposite was accomplished by transmission electron microscopy, X-ray photoelectron spectrum, and field emission scanning electron microscope. The electrochemistry and ECL behavior of Ru(bpy)32+ immobilized on TiNTs were studied with tripropylamine as a coreactant. As-prepared Ru-TiNTs exhibited very good stability and Ru(bpy)32+ species contained showed excellent ECL behavior. Therefore, the as-prepared Ru(bpy)32+-titanate nanotube nanocomposite exhibited great promise as new luminescent materials for solid-state ECL detection.  相似文献   

7.
Aligned ZnO nanotubes with the outer radius of about 200 nm were synthesized by a two-step approach, which involves electrospinning and sputtering techniques. The ZnO nanotubes are polycrystalline hexagonal structure, indicted by XRD and TEM analysis. The ZnO nanotubes show sensing property to H2. The sensor response of the aligned nanotubes to 100 ppm H2 increases from 2.3 to 3.6 with the temperature increasing from 200 to 400 °C. Beside, the sensor response of the ZnO nanotubes increases compared with that of the ZnO film prepared under the same condition.  相似文献   

8.
Wurtzite ZnO nanonails on silicon substrate were successfully synthesized by thermal vapor transport and condensation method at a low temperature without a metal catalyst. Pure Zn powders were used as raw material and O2/Ar powders as source gas. The products were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the deposited nanostructures include aligned ZnO nanonails. The ZnO nanonails, with crystalline cap and small-diameter shafts, grow along the c-axis. The optical properties have been revealed by photoluminescence spectra. We considered that the ZnO nanonails growth is a vapor-solid process.  相似文献   

9.
The growth rate and terminal length of vertically aligned carbon nanotube arrays (VANTAs) grown by chemical vapor deposition have been dramatically improved through pulsed KrF excimer laser pretreatments of multilayer metal catalyst films. Silicon wafers coated with Al, Mo, and Fe layers were laser processed in air with single laser shots of varying fluence through circular apertures, then heated to ∼750°C and exposed to acetylene and ferrocene containing gas mixtures typically used to grow vertically aligned nanotube arrays. In situ videography was used to record the growth kinetics of the nanotube arrays in both patterned and unpatterned regions to understand the changes in catalytic activity, growth rates, and termination of growth. The height of the patterned regions varied with fluence, with the most successful treatment resulting in 1.4 cm tall posts of nanotubes embedded in a 0.4 cm tall nanotube carpet. High-resolution transmission electron microscopy images from the nanotubes in the posts revealed fewer walls, smaller diameters, and a much narrower distribution of diameters compared to the nanotubes grown in the carpet. This information, along with data obtained from weighing the material from each region, suggests that pulsed laser processing can also significantly increase the areal density of VANTAs. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy.  相似文献   

10.
Arrays of vertically aligned nitrogen-doped carbon (CN x ) nanotubes have been synthesized by decomposition of aerosol mixture of acetonitrile and ferrocene at 850°C. Nitrogen concentration in the outer shells of the CN x nanotubes was found from X-ray photoelectron spectroscopy (XPS) data to reach ∼6%. The XPS N 1s spectra and N 1s near-edge X-ray absorption fine structure (NEXAFS) spectra identified three chemical forms of nitrogen in the CN x nanotube arrays: pyridine-like, graphitic, and molecular nitrogen. The π * resonance of molecular nitrogen showed clear polarization dependence that indicates predominant orientation of N2 molecules along the nanotubes axis. The estimated range of the polar angle distribution of the N2 molecules orientation in the CN x nanotube array amounts to 15°.  相似文献   

11.
Single-walled carbon nanotubes (SWNTs) encapsulating C70s, so-called C70 peapods, were synthesized in high yield by a vapor-phase doping method. Raman spectra, high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) measurement indicate that the tube diameter is one of the important factors to determine the orientation of C70 molecules inside the SWNTs. SWNTs with different diameters give different alignment of C70 molecules. The lying orientation is favorable over the standing orientation in thin nanotube, i.e. 1.36 nm nanotubes, whereas the standing orientation is favorable in thick nanotubes, i.e. 1.49 and 1.61 nm nanotubes.  相似文献   

12.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

13.
付乌有  曹静  李伊荇  杨海滨 《物理学报》2011,60(6):67505-067505
在90 ℃水溶液中采用两步晶体生长法制备出类花状ZnO-CoFe2O4复合纳米管束.ZnO纳米管束的管壁厚度大约为60 nm,管的直径大约为350 nm,CoFe2O4纳米颗粒连续包覆在ZnO纳米管束的表面,CoFe2O4纳米颗粒尺寸小于40 nm, 壳层厚度随着CoFe2O4在ZnO-CoFe2O4 关键词: 类花状 2O4')" href="#">ZnO-CoFe2O4 纳米管束 微波吸收剂  相似文献   

14.
In this study, we prepared highly ordered TiO2 nanotube arrays on Ti through an anodizing process. Then, utilizing its proven antibacterial properties, we coated our TiO2 nanotubes (TiO2-NTs) with ZnO using the sol–gel method. We characterized the morphology, structure, and composition of the ZnO-coated TiO2 nanotubes (ZnO-TNTs) using field-emission scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, respectively. We investigated surface topography and roughness of the coatings by atomic force microscopy operated in the tapping mode. Our results revealed impurity-free, anatase-phase TiO2 nanotubes that are uniformly coated with a ZnO layer. Finally, we tested the antibacterial activity of ZnO-TNTs against Staphylococcus aureus, and found ZnO-TNTs significantly improved the antibacterial properties of Ti implants. We conclude that ZnO-TNTs provide Ti with antibacterial activity, which highlights its potential in orthopedic and dental implants.  相似文献   

15.
Nitrogen-doped Y-junction bamboo-shaped carbon nanotubes were synthesized by chemical vapor deposition of monoethanolamine/ferrocene mixture on GaAs substrate at 950 °C. The use of monoethanolamine as the C/N feedstock simplifies the experimental arrangement by producing ammonia during the growth process. The structure, morphology and graphitization of as-grown nitrogen-doped carbon nanotubes (CNx) were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy analysis. TEM analysis indicates that nanotubes have a bamboo-like structure. The nitrogen concentration on as-grown CNx nanotube was found to be 7.8 at.% by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis also indicated that there are two different types of nitrogen atoms (pyridinic and graphitic) in these materials. The possible growth mechanism of formation of Y-junction CNx nanotubes was briefly discussed. Field emission measurement suggested that as-grown CNx nanotubes are excellent emitters with turn-on and threshold fields of 1.6 and 2.63 V/μm, respectively. The result indicated that monoethanolamine proves to be an advantageous precursor to synthesize Y-junction nitrogen-doped carbon nanotubes and such nanotubes might be an effective material to fabricate various field emission devices.  相似文献   

16.
The authors’ endeavors over the last few years with respect to boron nitride (BN) nanotube metal filling are reviewed. Mo clusters of 1–2 nm in size and FeNi Invar alloy (Fe ∼60 at. %; Ni ∼40 at. %) or Co nanorods of 20–70 nm in diameter were embedded into BN nanotube channels via a newly developed two-stage process, in which multi-walled C nanotubes served as templates for the BN multi-walled nanotube synthesis. During cluster filling, low-surface-tension and melting-point Mo oxide first filled a C nanotube through the open tube ends, followed by fragmentation of this filling into discrete clusters via O2 outflow and C→BN conversion within tubular shells at high temperature. During nanorod filling, C nanotubes containing FeNi or Co nanoparticles at the tube tips were first synthesized by plasma-assisted chemical vapor deposition on FeNi Invar alloy or Co substrates, respectively, and, then, the nanomaterial was heated to the melting points of the corresponding metals in a flow of B2O3 and N2 gases. During this second stage, simultaneous filling of nanotubes with a FeNi or Co melt through capillarity and chemical modification of C tubular shells to form BN nanotubes occurred. The synthesized nanocomposites were analyzed by scanning and high-resolution transmission electron microscopy, electron diffraction, electron-energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. The nanostructures are presumed to function as ‘nanocables’ having conducting metallic cores (FeNi, Co, Mo) and insulating nanotubular shields (BN) with the additional benefit of excellent environmental stability. Received: 10 October 2002 / Accepted: 25 October 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

17.
The physisorption of molecular hydrogen in BC3 composite single-walled nanotube, investigated using density functional theory, was compared with single-walled carbon nanotube. Both external and internal adsorption sites of these two nanotubes have been studied with the hydrogen molecular axis oriented parallel to the nanotube wall. The calculated results show that: ([see full textsee full text]) the physisorption energies of a H2 molecule are larger for BC3(8,0) composite nanotube than for C(8,0) nanotube at all adsorption sites examined. ([see full textsee full text]) For these two nanotubes, the physisorption energies are larger for hydrogen bound inside the nanotubes than for adsorption outside the nanotubes. The different behavior between these two nanotubes is explained by the contour plots of electron density and charge-density difference of them. The present computations suggest that BC3 nanotube may be a better candidate for hydrogen storage than carbon nanotube.  相似文献   

18.
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.  相似文献   

19.
In this study, high density well aligned ZnO nanotubes were grown on glass via a two-step growth-then-etching by simple and template-free hydrothermal method. We used etching procedure to introduce additional zinc interstitial defects in the ZnO nanotubes. The optical properties of the ZnO nanotubes have been investigated by depth-resolved cathodluminescence spectroscopy (DRCLS) which provides information about the physical origin and growth dependence of optically active defects together with their spatial distribution. The DRCLS study gives clear evidence about the enhancement of zinc interstitial defects which are responsible for the violet and decrease of the DL emission in ZnO nanotubes when compared to the as grown ZnO nanorods. We observed a variation in the zinc interstitials along the nanotube depth.  相似文献   

20.
Well-aligned ZnO rod arrays have been successfully synthesized on glass substrate from the aqueous solution of Zn(NO3)2·6H2O and C6H12N4 (HMT). Some critical issues such as seed layers, concentration and reaction time were investigated. The results show that ZnO seed layers were pre-requisite for the aligned growth of ZnO rod arrays. The length of rods is tunable in a range from 2 μm to 3 μm by varying the solution concentration and reaction time. X-ray diffraction results demonstrate that ZnO rods are wurtzite crystal structures preferentially orienting in the direction of the c-axis. Microstructure observation by scanning electron microscope confirms that ZnO rods grew up perpendicular to the substrate. Room-temperature photoluminescence (PL) spectrum of rod arrays shows a strong emission band at about 396 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号