首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

2.
Samples of high-temperature superconducting oxide EuBa2Cu3O6 + δ (Eu-123) with total cationic composition Eu: Ba: Cu = 1: 2: 3 are investigated by means of local X-ray microanalysis and high-resolution transmission electron microscopy. The cationic nonstoichiometry of Eu-123 oxide is revealed. The particles of the studied samples are inhomogeneous in structure on the nanoscale, with two types of inhomogeneities: one with typical sizes of one to several nanometers, and one with typical sizes of 10 to 20 nm, respectively.  相似文献   

3.
4.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

5.
The slightly underdoped high-temperature system La1.86Sr0.14CuO4 (LSCO) is studied by means of high-energy high-resolution angular resolved photoemission spectroscopy (ARPES) and the combined LDA + DMFT + Σ k computational scheme. The corresponding one-band Hubbard model is solved via dynamical mean field theory (DMFT), and the model parameters needed are obtained from first principles in the local density approximation (LDA). An “external” k-dependent self-energy Σ k describes the interaction of correlated electrons with antiferromagnetic (AFM) pseudogap fluctuations. Experimental and theoretical data clearly show a “destruction” of the LSCO Fermi surface in the vicinity of the (π, 0) point and formation of “Fermi arcs” in the nodal directions. ARPES energy distribution curves as well as momentum distribution curves demonstrate a deviation of the quasiparticle band from the Fermi level around the (π, 0) point. The same behavior of spectral functions follows from theoretical calculations suggesting the AFM origin of the pseudogap state.  相似文献   

6.
The inverse magnetoelectric effect and internal friction in two-layer composites based on ferromagnetic Tb0.12Dy0.2Fe0.68 and piezoelectric PbZr0.53Ti0.47O3 are studied in an ac electrical field in the frequency range of 52–213 kHz at temperatures of 293 to 400 K. A correlation is found between the internal friction and the efficiency of the inverse magnetoelectric transformation at resonant frequencies.  相似文献   

7.
A comparative μSR study of ceramic samples of the EuMn2O5 and Eu0.8Ce0.2Mn2O5 multiferroics is performed in the temperature range from 15 to 300 K. It is found that the Ce doping of the EuMn2O5 sample slightly reduces the temperature of the magnetic phase transition from T N = 45 K for the EuMn2O5 sample to T N = 42.5 K for the Eu0.8Ce0.2Mn2O5 sample. Below the temperature T N for both samples, there are two types of localization of a thermalized muon with different temperature dependences of the precession frequency of the magnetic moment of the muon in an internal magnetic field. The higher frequency in both samples refers to the initial antiferromagnetic matrix. The behavior of this frequency in Eu0.8Ce0.2Mn2O5 follows the Curie–Weiss law with the exponent β = 0.29 ± 0.02, which differs from the value β = 0.39 standard for 3D Heisenberg magnetics and is observed in EuMn2O5, because of the strong frustration of the doped sample. The temperature-independent low frequency is due to the presence of Mn3+–Mn4+ ferromagnetic pairs located along the b axis of the antiferromagnetic matrix and in the regions of phase separation, which contain such ion pairs and e g electrons recharging them. In both samples, polarization losses are the same (about 20%) and are associated with the formation of Mn4+–Mn4+ + Mu complexes near Mn3+–Mn4+ ferromagnetic pairs. In the temperature interval from 25 to 45 K, the separation of the Eu0.8Ce0.2Mn2O5 structure into two fractions where the relaxation rates of polarization of muons differ by an order of magnitude is revealed. This effect is due to a change in the state of regions of phase separation (1D superlattices) at the indicated temperatures. Such effect in EuMn2O5 is significantly weaker.  相似文献   

8.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

9.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

10.
We investigate in detail the dc magnetization and nonlinear ac susceptibility behavior of the superconducting ferromagnet RuSr2Eu1.5Ce0.5Cu2O10- δ (Ru1222) to develop a comprehensive understanding of the spin glass and superparamagnetism in this material. The structural properties of the system result in the formation of magnetic (ferromagnetic) clusters of different sizes, shapes and properties. The magnetic clustering of the system leads to observation of various features in dc magnetization and ac susceptibility consistent with superparamagnetism and cluster spin glass states, which can coexist or stand alone, depending on the temperature range considered. Experimental results of magnetic measurements in combination with their analysis have enabled us to explain and distinguish these phenomena, as well as to propose a temperature dependent scenario of the system behavior.  相似文献   

11.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

12.
The effect of hydrostatic pressure on the superconducting transition temperature was measured for the Hg-1223 phase of a fluorinated mercury cuprate high-temperature superconductor with Tc(optim)=38 K. The value of the Tc derivative with respect to pressure was found to be rather high (11.0 K/GPa); at P=1.5 GPa, Tc=153.5 K. The results obtained are discussed in connection with works on the synthesis of such samples.  相似文献   

13.
A high-power, continuous-wave 0.6% Nd3+-doped ceramic Y3Al5O12 (Nd:YAG) laser has been developed. 110 W laser output at 1064 nm was obtained, with a slope efficiency of about 41%. The M2 factor was found to be around 6. The laser performance of the ceramic laser material was found to compare favorably with that obtained with single crystal Nd:YAG. PACS 42.55.-f; 42.55.Xi; 42.70.Hj  相似文献   

14.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

15.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

16.
Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500–25000 cm−1 and temperature range 9–300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed.  相似文献   

17.
The electronic, structural, and magnetic properties of Ru and Rh thin films on Ag(001) substrate are investigated by means of density functional calculations. The generalized gradient approximation is used to treat the exchange correlation potential. Alloying, burying, and fully relaxing effects are considered for different degrees of coverage: 0.25, 0.50, 1 and 2 ML. Alloying and burying effects reduce the magnetic moments while fully relaxing effects enlarge them. For Ru, the magnetic moment is high for 0.25 ML and vanishes for 2 ML; however, for Rh, the magnetic moment remains high even for 2 ML. Nevertheless, when cluster formation is analysed we conclude that the absence of magnetism in a number of previous experimental works could be attributed to the formation of big size clusters.  相似文献   

18.
The current dependence of the excess conductivity is measured up to ≃3Tc for a Bi2Sr2CuO6+δ thin film, as a function of doping. It is found to be anomalously sensitive to the transport current and to behave as a universal function of T/Tc in the whole doping range. We discuss these results in the perspective of a granular superconductor with a gapless-like behavior.  相似文献   

19.
The effect of simultaneous Sr substitution at the Ba and Y sites has been studied in the Sr0.75Y0.75Ba1.5Cu3O7–dsystem. Attempts to replace 25% Y and 25% Ba have been successful and superconductivity was observed above 78 K for Sr0.75Y0.75Ba1.5Cu3O7–d compound with high oxygen content, i.e., O6.76, and having orthorhombic crystal symmetry. The compound was treated in argon gas at 800°C to reduce the oxygen content and to induce some structural changes. The Sr0.75Y0.75Ba1.5Cu3O6.1 compound thus obtained has tetragonal symmetry and low oxygen content, O6.1. It has also shown superconductivity at 28 K. The paper presents a careful comparison of the structural and electrical properties and infrared absorbance spectra of the two compounds with the same metallic composition, Sr0.75Y0.75Ba1.5Cu3, but with different oxygen content and crystal symmetry. The study clearly establishes the occurrence of superconductivity in tetragonal Sr-substituted (both at Y and Ba sites in) YBCO.  相似文献   

20.
In the present work, (1−x)(0.935Bi0.5Na0.5TiO3–0.065BaTiO3)–xKNbO3 (BNT–BT–KN, BNT–BT–100xKN) ceramics with x ranging from 0 to 0.1 were prepared by the conventional ceramic fabrication process. A large electrostrictive coefficient of ∼10−2 m4 C−2 is obtained with the composition x ranging from 0.02 to 0.1, which is close to the well-known electrostrictive material Pb(Mg1/3Nb2/3)O3. Under an electric field of 4 kV/mm, the electrostrictive strain can reach as high as 0.08%. Besides, the electric field induced strain behavior indicates a temperature independent behavior within the temperature range of 20 to 150°C. The large electrostrictive strain is suggested to be ascribed to the formation of non-polar (NP) phase developed by the KNbO3 substitution, and the high electrostrictive coefficient of BNT–BT–KN ceramics makes them great candidates to be applied in the new solid-state actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号