首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曹瑞  张健 《中国物理 B》2013,(10):182-185
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.  相似文献   

2.
In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schrdinger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.  相似文献   

3.
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.  相似文献   

4.
李画眉  葛龙  何俊荣 《中国物理 B》2012,21(5):50512-050512
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schrdinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.  相似文献   

5.
We construct various novel exact solutions of two coupled dynamical nonlinear Schrdinger equations.Based on the similarity transformation,we reduce the coupled nonlinear Schrdinger equations with time-and space-dependent potentials,nonlinearities,and gain or loss to the coupled dynamical nonlinear Schrdinger equations.Some special types of non-travelling wave solutions,such as periodic,resonant,and quasiperiodically oscillating solitons,are used to exhibit the wave propagations by choosing some arbitrary functions.Our results show that the number of the localized wave of one component is always twice that of the other one.In addition,the stability analysis of the solutions is discussed numerically.  相似文献   

6.
The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.  相似文献   

7.
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schrdinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves.  相似文献   

8.
Dynamics of three nonisospectral nonlinear Schrdinger equations(NNLSEs), following different time dependencies of the spectral parameter, are investigated. First, we discuss the gauge transformations between the standard nonlinear Schrdinger equation(NLSE) and its first two nonisospectral counterparts, for which we derive solutions and infinitely many conserved quantities. Then, exact solutions of the three NNLSEs are derived in double Wronskian terms. Moreover,we analyze the dynamics of the solitons in the presence of the nonisospectral effects by demonstrating how the shapes,velocities, and wave energies change in time. In particular, we obtain a rogue wave type of soliton solutions to the third NNLSE.  相似文献   

9.
The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth solitary wave,kink and anti-kink wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given.Also,all possible explicit exact parametric representations of the waves are presented.  相似文献   

10.
张焕萍  李彪  陈勇 《中国物理 B》2010,19(6):60302-060302
By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schr?dinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.  相似文献   

11.
Analytical solutions in terms of rational-like functions are presented for a(3+1)-dimensional nonlinear Schrdinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz.Several free functions of time t are involved to generate abundant wave structures.Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.  相似文献   

12.
We construct analytical periodic wave and soliton solutions to the generalized nonautonomous nonlinear Schrdinger equation with time-and space-dependent distributed coefficients in harmonic and optical lattice potentials.We utilize the similarity transformation technique to obtain these solutions.Constraints for the dispersion coefficient,the nonlinearity,and the gain(loss) coefficient are presented at the same time.Various shapes of periodic wave and soliton solutions are studied analytically and physically.Stability analysis of the solutions is discussed numerically.  相似文献   

13.
A direct self-similarity mapping approach is successfully applied to a generalized nonlinear Schrdinger (NLS) system. Based on the known exact solutions of a self-similarity mapping equation, a few types of significant localized excitation with novel properties are obtained by selecting appropriate system parameters. The integrable constraint condition for the generalized NLS system derived naturally here is consistent with the known compatibility condition generated via Painlev analysis.  相似文献   

14.
A new generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation, which has more new solutions. More new multiple soliton-like solutions are obtained for the (3 1)-dimensional Burgers equation with variable coefficients.  相似文献   

15.
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

16.
陈怀堂  张鸿庆 《中国物理》2003,12(11):1202-1207
A new generalized Jacobi elliptic function method is used to construct the exact travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation which has more new solutions. More new doubly periodic and multiple soliton solutions are obtained for the generalized (3+1)-dimensional Kronig-Penny (KP) equation with variable coefficients. This method can be applied to other equations with variable coefficients.  相似文献   

17.
In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti- Leon-Pempinelle equation, the Pochhammer-Chree equations and the Painleve integrable Burgers equation with free parameters. When the free parameters receive particular values, solitary wave solutions are constructed from the traveling waves. We use the Jacob/elliptic equation as an auxiliary equation in place of the second order linear equation. It is established that the proposed algorithm offers a further influential mathematical tool for constructing exact solutions of nonlinear evolution equations.  相似文献   

18.
王欢  李彪 《中国物理 B》2011,20(4):40203-040203
In this paper,we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear Schrdinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions,one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results,some previous one-and two-soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one-and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.  相似文献   

19.
A unified theory to construct exact optical rogue wave solutions of (1+1)-dimensional nonlinear Schrdinger equation with varying coefficients is proposed. The dynamics of the first-order optical rogue waves in nonlinear graded-index waveguide amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearity are also investigated. Moreover, under the suitable parameter condition, the propagation characteristics of the rogue waves in the nonlinear optical media are discussed. The properties of the optical rogue waves, such as width, amplitude, and position, can be controlled in the nonlinear optical media.  相似文献   

20.
刘煜 《中国物理 B》2012,(11):41-46
The solutions to a linear wave equation can satisfy the principle of superposition,i.e.,the linear superposition of two or more known solutions is still a solution of the linear wave equation.We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic,triangle,and exponential functions,and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics.The linear superposition solutions to the generalized KdV equation K(2,2,1),the Oliver water wave equation,and the k(n,n) equation are given.The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed,and the reason why the solutions with the forms of hyperbolic,triangle,and exponential functions can form the linear superposition solutions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号