首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Experimental studies of neutron drip line nuclei are introduced. The neutron drip line in the oxygen-magnesium region has been explored by the projectile fragmentation of a 48Ca beam. New neutron-rich isotopes, 34Ne and 37Na, have been observed together with some evidence for the particle instability of 33Ne and 36Na. Recent data on mass measurements of neutron-rich nuclei at GANIL and some characteristics of binding energies in this region are discussed. Nuclear binding energies are very sensitive to the existence of nuclear shells, and together with the measurements of instability of doubly magic nuclide 28O, they provide information on changes in neutron shell closures of very neutron-rich isotopes from carbon up to calcium. The conclusion about a rearrangement in neutron shell closures is given. The spectroscopic measurements can reveal details of the underlying microscopic structures; in-beam γ-ray spectroscopy is an effective tool to check for shell closures. The results on the γ-ray energies of the first 2+ level in even-even nuclei for the range N=12–32 are discussed. The strength of N=20 and N=28 shells is variable in the region from carbon up to magnesium.  相似文献   

2.
Clustering in nuclei is discussed putting emphasis on the investigation of the role of nuclear clustering in neutron-rich nuclei. The subjects we discuss include clustering in neutron-rich Be, B and C isotopes, clustering in the island of inversion around N = 20, and clustering in the region with A ≈ 40. Be isotopes present us typical examples of clustering in neutron-rich nuclei not only in their ground band states but also in their excited band states, for which we show the analyses based on antisymmetrized molecular dynamics (AMD). Clustering in Be isotopes near neutron dripline is intimately related to the breaking of the neutron magic number N = 8. In this connection we report our study about the possible relation of the clustering with the breaking of the neutron magic number N = 20 in the island of inversion including 32Mg and 30Ne. Our discussion is not only about the positive parity states but also about negative parity states. Recently in the latter half of sd shell and in the pf shell many excited rotational bands with large deformation have been found to exist. Since the first excited K π = 0+ and K π = 0- bands in 40Ca have been regarded as constituting inversion doublet bands having the 36Ar + α structure, and since the first excited K π = 0- band in 44Ti has been concluded to have 40Ca + α structure through the α transfer reaction and by using the unique α optical potential on 40Ca, it is important to investigate the role of α clustering in these newly-found rotational bands with large deformation. We will report the AMD study about this problem.  相似文献   

3.
The projected shell model (PSM) calculations have been performed for the neutron-rich even–even 102?110Mo and odd—even 103?109Mo isotopes. The present calculation reproduces the available experimental data on the yrast bands. In case of even–even nuclei, the structure of yrast bands is analysed and electromagnetic quantities are compared with the available experimental data. The g-factors have been predicted for high spin states. For the odd-neutron nuclei, the structures of yrast positive- and negative-parity bands are analysed and found to be in reasonable agreement with the experiments for 103?107Mo. The disagreement of the calculated and observed plots for energy staggering quantity clearly establishes the occurrence of sizable triaxiality in 103,105Mo and also predicts a decrease in the quantum of triaxiality with increasing neutron number and angular momentum for odd mass neutron-rich Mo isotopes.  相似文献   

4.
A survey of experimental results obtained at GANIL (Caen, Prance) on the study of the properties of very neutron-rich nuclei (Z = 6–20, A = 20–60) near the neutron drip line and resulting in an appearance of further evidence for the new magic number N = 16 is presented. Very recent data on mass measurements of neutron-rich nuclei at GANIL and some characteristics of binding energies in this region are discussed. Nuclear binding energies are very sensitive to the existence of nuclear shells and together with the measurements of instability of doubly magic nuclei 10He and 280 they provide information on changes in neutron shell closures of very neutron-rich isotopes. The behaviour of the two-neutron separation energies S2n derived from mass measurements gives a very clear evidence for the existence of the new shell closure N = 16 for Z = 9 and 10 appearing between 2s1/2 and ld3/2 orbitals. This fact, strongly supported by the instability of C, N and O isotopes with N > 16, confirms the magic character of N = 16 for the region from carbon up to neon while the shell closure at N = 20 tends to disappear for Z ≤ 13. Decay studies of these hardly accessible short-lived neutron-rich nuclei from oxygen to silicon using the in-beam γ-ray spectroscopy are also reported.  相似文献   

5.
Reaching the limits of nuclear stability offers unique opportunities to understand basic nuclear properties. New shell structures close to the driplines can change the existence of neutron-rich nuclei. A new search for 16Be confirmed the previous limit for particle stable Be isotopes at A=14. Single proton knock-out reactions offer the potential for more sensitive searches of very weakly bound nuclei. In order to extend the knowledge of the neutron dripline beyond Z=8 requires new accelerator developments. The proposed new rare isotope accelerator has the potential to push the limit of the neutron dripline to at least Z=25.  相似文献   

6.
The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N = 126.  相似文献   

7.
The properties of neutron-rich Zr isotopes up to the neutron drip line and beyond it have been investigated on the basis of the Hartree-Fock method with the Skyrme forces (Ska, Sly4), taking into account the deformation. By the example of chains of Zr isotopes, good agreement is shown for the two-neutron separation energies and mean-square radii with the known results of Hartree-Fock-Bogolyubov calculations with the Sly4 forces. For the extremely neutron-rich Zr isotopes, states with very large deformation parameters (β ≈ 0.4?0.45) of neutron and proton density distributions can be realized. Beyond the neutron drip line with respect to emission of two neutrons, the existence of 150,152Zr isotopes, which are stable with respect to one-neutron emission, is predicted.  相似文献   

8.
Cluster structures of nuclei are discussed, with emphasis on nuclear clustering in unstable nuclei. The subjects we discuss are alpha condensed states, clustering in Be and B isotopes, and clustering in 32Mg and 30Ne. The subject of alpha cluster condensation comes from the clustering nature of dilute nuclear matter. We discuss that recent heavy-ion central collision experiments give us nice evidence of the clustering in dilute nuclear matter. We then present a new prediction of the existence of the “alpha cluster condensed states” in the self-conjugate 4n nuclei around the breakup threshold energy into n alpha-particles. As for the clustering in neutron-rich Be, we discuss the comparison between the antisymmetrized molecular-dynamics results and the recent experimental data, which shows that the clustering feature manifests itself very clearly in neutron-rich Be isotopes both in the ground and excited states. Clustering in Be isotopes near neutron dripline is intimately related to the breaking of the neutron magic number N = 8. We report our recent study about the possible relationship between the clustering and the breaking of the neutron magic number N = 20 in 32Mg and 30Ne. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"e-mail: horiuchi@ruby.scphys.kyoto-u.ac.jp  相似文献   

9.
A partial decay scheme for 0.1 sec 98Rb has been deduced from γ-singles, γ-multispectra ana γγ coincidence measurements taken at the OSTIS mass-separator system at the Institut Laue-Langevin. The low-lying levels of 98Sr follow the energy level systematics of the even-AN = 60 isotones. The onset of nuclear deformation in even-A neutron-rich Sr isotopes appears to occur at mass 98, as the first 2+ level energy drops from the nearly constant value of about 800 keV for masses 90–96 to 144 keV at mass 98. Energy level systematics indicate that a transition in the nuclear structures of the more neutron-rich nuclei near mass 100 occurs rather sharply at neutron number N = 60.  相似文献   

10.
The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number N = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with N = 154–172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of N = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving r-process nucleosynthesis.   相似文献   

11.
The diffusion-effusion model has been used to analyse the release and yields of Fr and Cs isotopes from uranium carbide targets of very different thicknesses (6.3 and 148 g/cm2) bombarded by a 1 GeV proton beam. Release curves of several isotopes of the same element and production efficiency versus decay half-life are well fitted with the same set of parameters. Comparison of efficiencies for neutron-rich and neutron-deficient Cs isotopes enables separation of the contributions from the primary (p + 238U) and secondary (n + 238U) reactions to the production of neutron-rich Cs isotopes. A rather simple calculation of the neutron contribution describes these data fairly well. The FLUKA code describes the primary and secondary-reaction contributions to the Cs isotopes production efficiencies for different targets quite well.  相似文献   

12.
A survey of experimental results obtained at GANIL (Caen, France) on the study of the properties of very neutron-rich nuclei (Z=6–20, A=20–60) near the neutron drip line and resulting in an appearance of further evidence for the new magic number N=16 is presented. Very recent data on mass measurements of neutron-rich nuclei at GANIL and some characteristics of binding energies in this region are discussed. Nuclear binding energies are very sensitive to the existence of nuclear shells, and together with the measurements of instability of doubly magic nuclei 10He and 28O, they provide information on changes in neutron shell closures of very neutron-rich isotopes. The behavior of the two-neutron separation energies S2n derived from mass measurements gives very clear evidence for the existence of the new shell closure N=16 for Z=9 and 10 appearing between the 2s1/2 and 1d3/2 orbitals. This fact, strongly supported by the instability of C, N, and O isotopes with N>16, confirms the magic character of N=16 for the region from carbon up to neon, while the shell closure at N=20 tends to disappear for Z≤13. Decay studies of these hardly accessible short-lived neutron-rich nuclei from oxygen to silicon using in-beam γ-ray spectroscopy are also reported.  相似文献   

13.

Recent fission experiment data provide interesting structure information for neutron-rich nuclei in the mass A ∼ 160 region. We apply the projected shell model to study the strongly-deformed, neutron-rich Sm isotopes. We perform calculations for rotational bands up to spin I = 20 (29/2) for even-even (odd-neutron) Sm isotopes, and analyze the band structure of low-lying states with quasiparticle excitations. Emphasis is given to rotational bands based on one-quasiparticle (1-qp) configurations in the odd-mass 159Sm. The 159Sm result is discussed together with those of the even-even isotopes 158,160Sm. New bands in 159Sm based on neutron 1-qp 1/2 and 5/2+ configurations are predicted. Electromagnetic transition probabilities are discussed.

  相似文献   

14.
The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF0 functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be Adrip2n = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to Adrip2n(SKM*) = 272.  相似文献   

15.
Neutron detectors with 3He-filled proportional counters are described. The use of these detectors in measuring the probability of neutron emission (in particular, multiparticle neutron emission) after the β decay of neutron-rich nuclei and in studying rare events of spontaneous fission of superheavy nuclei is considered.  相似文献   

16.
Nuclear formation processes and the conditions of their physical environment are investigated on the basis of the empirical abundance distribution of the nuclei. Three different abundance components of the heavy nuclei require very different physical conditions for their formation but appear genetically correlated. The component formed in a slow neutron capture chain indicates the pre-existence of the neutron-rich component, and of an iron abundance peak considerably smaller than found in the solar system. The neutron-rich and the proton-rich components seem to have been formed byβ-decay from progenitors which were produced at conditions of matter densityρ≈2×1010g/cm3 and of temperaturekT≈500keV, respectively.  相似文献   

17.
We review structure data obtained by decay spectroscopy of neutron-rich nuclei of mass close to 100. Emphasis is put on the contribution of experiments at IGISOL in the nineties. They confirmed the earlier postulated shape coexistence in the fast shape-transition region between N = 58 (spherical ground states and low collectivity) and N = 60 (strong axial deformation). A detailed spectroscopic study of the A = 99 chain established the upper-Z limit of the N = 56 shell closure region with 99Nb, owing to striking similarities with 97Y. A consequence of the N = 56 closure is that the s 1/2 odd-neutron becomes the ground state of the most neutron-rich N = 57 isotones, starting with 99Mo, instead of the degenerated d 5/2 and g 7/2 subshells familiar in the tin region. Consequences on the change of spin on astrophysical r-process calculations are briefly discussed. Finally, we say a few words about neutron-rich rhodium and palladium isotopes near the neutron midshell where regular and intruder states coexist very close to each other.  相似文献   

18.
19.
The neutron drip line in the neon-magnesium region has been explored by the projectile fragmentation of a 48Ca(59.8 A MeV) beam using the new fragment separator LISE-2000 at GANIL. New neutron-rich isotopes, 34Ne and 37Na, have been observed together with some evidence for the particle instability of 33Ne and 36Na.  相似文献   

20.
On the basis of the Hartree-Fock method as implemented with Skyrme forces (Ska, SkM*, Sly4, and SkI2) and with allowance for an axial deformation and nucleon pairing in the Bardeen-Cooper-Schrieffer approximation, the properties of extremely neutron-rich even-even nuclei were calculated beyond the neutron drip line known earlier from theoretical calculations. It was shown that the chains of isotopes beyond the neutron drip line that contain N = 32, 58, 82, 126, and 184 neutrons form peninsulas of nuclei stable against the emission of one neutron and, in some cases, peninsulas of nuclei stable against the emission of two neutrons. The neutron- and proton-density distributions in nuclei forming stability peninsulas were found to be spherically symmetric. A mechanism via which the stability of nuclei might be restored beyond the neutron drip line was discussed. A comparison with the results of calculations by the Hartree-Fock-Bogolyubov method was performed for long chains of sulfur and gadolinium isotopes up to the neutron drip line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号