首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
许龙  汪尧 《物理学报》2023,(2):159-165
为了对双泡耦合的声空化过程进行模拟,本文从流体动力学控制方程和流体体积分数模型出发,在Fluent软件中构建双泡耦合超声空化三维有限元仿真模型,对超声波驱动下流体中双泡耦合声空化动力学过程进行数值模拟,并通过对空化气泡周围声场的变化进行分析研究双泡耦合声空化的非线性动力学特性.结果显示:在超声波驱动下,球形气泡先缓慢扩张,扩张到最大半径后迅速收缩直至溃灭;耦合双气泡间存在相互作用力,使得空化气泡的扩张受到抑制、气泡收缩时间增长;空化气泡在收缩阶段的能量转换能力增强,相比单气泡声空化,耦合双气泡溃灭时气泡内部的压强更大.本文分析结果将为超声空化泡群的动力学过程模拟提供参考.  相似文献   

2.
杨日福  洪旭烨 《应用声学》2018,37(4):455-461
本文基于流体动力学控制方程和VOF模型,在FLUENT 14.5软件环境下对超声空化泡进行数值模拟。首先研究了超声空化泡一个周期内的形态变化,并且利用空化泡形态变化的最大面积、最小面积、膨胀时间、收缩时间等数值结果分析超声参数对空化效果的影响。同时探究了双频超声作用下空化泡运动的变化,计算结果表明:在其他条件相同的情况下,在1~5MPa范围内,超声声压幅值为3MPa时空化效果最好;当超声频率大于20kHz时,空化效果随着超声频率的增大而降低。对于频率相同的双频超声,较声压幅值为其两倍的单频超声有更好的空化效果;对于频率不同的双频超声,空化效果受到频率差的影响。  相似文献   

3.
硫酸中多气泡声致发光光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
安宇 《应用声学》2013,32(3):205-211
非线性声波方程与气泡脉动方程联立, 可以描述声空化云中的声场以及任何一个气泡的脉动过程,为数值计算空化场问题提供了理论框架.计算的声压分布变化可以用来计算单气泡动力学,了解任何位置处气泡发光过程以及气泡内气体温度和压强变化等. 对浓硫酸中氙气泡空化云的计算定性符合实验观测, 只有钠原子线谱的计算结果相比实验观测有些出入.  相似文献   

4.
空化泡液体外围压强的分布   总被引:1,自引:0,他引:1       下载免费PDF全文
张鹏利  林书玉  张涛 《应用声学》2012,31(2):98-102
本文从空化泡动力学理论出发,分别讨论了空化泡在压缩和膨胀时液体中的压强分布情况,并作了数值模拟。研究结果表明,空化泡在膨胀和压缩时其外围压强分布明显不同,不能将其一并而论。发现当空化泡的半径增大时液体的压强在不断变化,压强是先变小后变大。而且这个压强的变化还与待测点距空化泡的距离有关。当空化泡的半径在不断变小时外界的压强在不断增大,当空化泡刚开始压缩时液体中的压强变化情况不是很明显,但当空化泡的半径变到1μm时,空化泡外界压强出现明显变化。当空化泡压缩到较小时,此时再增加外界压强空化泡的半径也不会在有很大的变化。  相似文献   

5.
吴强  姚澄  朱昌平  韩庆邦 《应用声学》2015,34(5):391-397
在不同深度条件下的水下构建物超声清洗中,声空化是重要的源动力之一。为探明水下环境压力对声空化的影响,本文基于数值计算的方法,通过对超声波作用下气泡动力学的研究,讨论了环境压力对空化泡溃灭时的气泡最大半径、释放能量以及溃灭功率等因素的影响。结果表明:空化泡最大半径与环境压力在一定范围内呈近似线性关系;随着环境压力增大,空化泡释放能量和溃灭功率均显著减小,且两者在变化趋势和变化幅度上几乎一致;当环境压力大于声压幅值时,空化泡的最大半径、内部压强、内部温度与释放能量均远低于空化发生在环境压力小于声压幅值时的情形。  相似文献   

6.
超声振动珩磨作用下空化泡动力学及影响参数   总被引:1,自引:0,他引:1       下载免费PDF全文
为了合理利用超声振动珩磨作用下的空化效应,以磨削区单个空化泡为研究对象,考虑珩磨头合成扰动速度和珩磨压力的作用建立了磨削区空化泡的动力学模型。数值模拟了空化泡初始半径,珩磨压力,液体静压力和超声声压幅值对磨削区空化效应的影响。研究表明考虑超声振动珩磨作用时,空化泡膨胀的幅值会受到抑制,其溃灭时间也会缩短,而且较容易出现稳态空化。珩磨压力和液体静压力对磨削区空化主要起抑制作用,超声波声压幅值在一定范围内能够促进磨削区空化效果的提升。本文的研究为进一步理解超声振动珩磨的空化机理提供了理论支持。  相似文献   

7.
双泡超声空化计算分析   总被引:4,自引:0,他引:4       下载免费PDF全文
卢义刚  吴雄慧 《物理学报》2011,60(4):46202-046202
将由速度势叠加原理得到的双泡超声空化动力学微分方程归一化,通过matlab语言编程计算,分析了水中空化泡的线度、双泡间距、声压幅值、声波频率等因素对空化过程的影响. 在双泡超声空化动力学微分方程中引入双频超声,探讨了双泡双频超声问题. 研究表明泡的线度是决定空化特性的主要因素,声压幅值对空化特性的影响最大,其次是超声波的频率;双泡间的相互作用影响空化特性,这种影响随双泡间距的增大而减弱;双频超声对双泡空化特性的影响有限,这种影响在两超声分量的声压幅值相等时较强. 关键词: 超声空化 双泡 双频超声  相似文献   

8.
声光协同作用下金纳米颗粒表面空化泡的动力学研究   总被引:2,自引:0,他引:2  
在激光和超声的协同作用下,金纳米颗粒表面会产生空化气泡。本文通过观察各种参数条件下空化泡的振荡变化,研究了激光光热、超声空化及其协同效应。研究发现,光热作用和激励声压的改变可以调节气泡的动力学过程,光热效应的增强有利于气泡的膨胀,激励声压的增加可以提高气泡运动的剧烈程度。两者的协同作用可以使气泡稳定存在并经历不同的振荡过程。此外,激光与超声协同方式的变化对气泡的运动过程有一定影响。   相似文献   

9.
声空化机械效应是聚焦超声治疗的重要物理机制.以脂类包膜微泡/纳米相变液滴为空化核可显著地增强空化效应,本文耦合空化动力学、组织和脂类包膜黏弹性模型,构建了组织内脂类包膜微泡声空化动力学模型,数值分析了微泡声空化动力学行为以及周围组织内机械应力的时空分布规律,并探究了包膜材料、组织黏弹性和驱动声压等关键参数的影响.包膜和组织黏弹性都将抑制微泡振动,但组织黏弹性的抑制作用更大.组织内机械应力在膨胀阶段为挤压应力,而在收缩阶段和反弹初始阶段为拉伸应力,且应力局部分布于微泡壁附近,随着距离增大而显著减小,其中拉伸应力衰减率明显更大.包膜黏弹性可减小应力,但声压较大时,应力减小可忽略不计.应力随着组织弹性增大而减小,随着组织黏度增大而先增大后减小,随着声压增大而增大.本研究可为进一步阐释聚焦超声治疗中组织机械损伤的内在机制奠定重要理论基础.  相似文献   

10.
利用新提出的Gilmore-NASG模型,在考虑液体可压缩效应的边界条件下,研究了可压缩液体中气泡的声空化特性,并与利用原有KM-Vd W模型计算得到的结果进行了比较.结果表明,相比于KM-Vd W模型,由于Gilmore-NASG模型采用新的状态方程来描述气体、液体以及由可压缩性引起的液体密度变化及声速变化,所以用Gilmore-NASG模型得到的空化气泡的压缩比更大、崩溃深度更深、温度和压力峰值更高.随着驱动声压幅值的增大,两种模型给出的结果差别愈加明显,而随着驱动频率的增大,两种模型给出的结果差别逐渐减小.这表明,在充分考虑泡内气体、周围液体在不同温度和压强下共体积的变化所导致的介质可压缩特性下,气泡内的温度和压强可能达到更高值.同时, Gilmore-NASG模型还预测出了气泡壁处液体的密度变化、压力变化、温度变化以及液体中的声速变化.因此, Gilmore-NASG模型在研究高压状态下气泡的空化特性以及周围液体对气泡空化特性的影响方面具有优点.  相似文献   

11.
赵福泽  朱绍珍  冯小辉  杨院生 《物理学报》2015,64(14):144302-144302
建立了高能超声制备碳纳米管增强AZ91D复合材料的声场计算模型, 并采用有限元方法计算了20 kHz超声直接作用下AZ91D熔体的声场分布, 熔体声场呈辐射状分布, 距离声源越远, 声压幅值越低. 采用超声作用下单一气泡变化模型描述超声作用下AZ91D 熔体中的空化效应, 通过对Rayleigh-Plesset方程的求解, 得到了不同声压作用下气泡的变化规律, 获得了声压幅值与熔体空化效应的关系, 声压幅值越大, 气泡溃灭半径阈值越小, 熔体发生空化效应越容易. 计算了固定坩埚尺寸、不同超声探头没入熔体深度情况下的声场, 得到了超声探头最优没入深度为30 mm左右. 将声场计算结果以及AZ91D熔体中空化效应的发生规律进行综合分析, 得到了超声功率对有效空化区域的影响规律, 超声功率较大时, 有效空化区域体积随超声功率近似成线性增大. 最后, 通过甘油水溶液超声处理实验, 验证了模拟计算的准确性.  相似文献   

12.
Acoustic cavitation occurs in ultrasonic treatment causing various phenomena such as chemical synthesis, chemical decomposition, and emulsification. Nonlinear oscillations of cavitation bubbles are assumed to be responsible for these phenomena, and the neighboring bubbles may interact each other. In the present study, we numerically investigated the dynamic behavior of cavitation bubbles in multi-bubble systems. The results reveal that the oscillation amplitude of a cavitation bubble surrounded by other bubbles in a multi-bubble system becomes larger compared with that in the single-bubble case. It is found that this is caused by an acoustic wake effect, which reduces the pressure near a bubble surrounded by other bubbles and increases the time delay between the bubble contraction/expansion cycles and sound pressure oscillations. A new parameter, called “cover ratio” is introduced to quantitatively evaluate the variation in the bubble oscillation amplitude, the time delay, and the maximum bubble radius.  相似文献   

13.
蒋丹  Li Song-Jing  包钢 《物理学报》2008,57(8):5072-5080
流动液体中的压力变化会引起气泡和气穴的产生及破灭,而气泡和气穴又会对液体的流动产生影响及压力变化.为了合理预测流控系统瞬态压力脉动过程中气泡和气穴的体积变化及其对脉动传播过程的影响,基于气泡溶解和析出的物理过程,建立了压力脉动过程中气泡和气穴产生及破灭的数学模型,并提出采用遗传算法对气泡模型中初始气泡体积、气体溶解和析出时间常数进行参数辨识.以一段液压油管路为研究对象,对管路中伴随气泡和气穴的瞬态压力脉动过程进行仿真及实验研究.利用仿真及实验结果,验证了采用遗传算法对气泡模型进行参数辨识的可行性. 关键词: 气泡 气穴 压力脉动 参数辨识  相似文献   

14.
超声珩磨区实际气体的单空泡动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步揭示功率超声振动的珩磨机理,以珩磨液为工作介质,研究了功率超声珩磨环境中实际气体的单空泡动力学特性。基于Rayleigh-Plesset方程,应用实际气体绝热方程和范德瓦尔斯方程对其进行了修正,建立了功率超声珩磨环境中实际气体的单空泡动力学方程以及实际气体单空泡共振频率方程。并运用4~5阶RungeKutta法模拟了不同超声条件(声压幅值、空泡初始半径、振动频率)对泡壁的运动以及运动速度的影响。结果表明:较高的声压幅值,空泡理论共振半径R'0与初始半径R0的比值为102数量级以及较低的超声频率有利于超声珩磨磨削区空化效应的发生。  相似文献   

15.
Bubble population phenomena in acoustic cavitation   总被引:11,自引:0,他引:11  
Theoretical treatments of the dynamics of a single bubble in a pressure field have been undertaken for many decades. Although there is still scope for progress, there now exists a solid theoretical basis for the dynamics of a single bubble. This has enabled useful classifications to be established, including the distinction between stable cavitation (where a bubble pulsates for many cycles) and transient cavitation (where the bubble grows extensively over time-scales of the order of the acoustic cycle, and then undergoes an energetic collapse and subsequent rebound and then, potentially, either fragmentation, decaying oscillation or a repeat performance). Departures from sphericity, such as shape and surface oscillations and jetting, have also been characterized. However, in most practical systems involving high-energy cavitation (such as those involving sonochemical, biological and erosive effects), the bubbles do not behave as the isolated entities modelled by this single-bubble theory: the cavitational effect may be dominated by the characteristics of the entire bubble population, which may influence, and be influenced by, the sound field.

The well established concepts that have resulted from the single-bubble theory must be reinterpreted in teh light of the bubble population, an appreciation of population mechanisms being necessary to apply our understanding of single-bubble theory to many practical applications of ‘power’ ultrasound. Even at a most basic level these single-bubble theories describe the response of the bubble to the local sound field at the position of the bubble, and that pressure field will be influenced by the way sound is scattered by neighbouring bubbles. The influence of the bubble population will often go further, a non-uniform sound field creating an inhomogeneous bubble distribution. Such a distribution can scatter, channel and focus ultrasonic beams, can acoustically shield regions of the sample, and elsewhere localize the cavitational activity to discrete ‘hot spots’. As a result, portions of the sample may undergo intense sonochemical activity, degassing, erosion, etc., whilst other areas remain relatively unaffected. Techniques exist to control such situations where they are desirable, and to eliminate this localization where a more uniform treatment of the sample is desired.  相似文献   


16.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

17.
Hua Xie 《中国物理 B》2022,31(11):114701-114701
To discover the microscopic mechanism responsible for cavitation nucleation in pure water, nucleation processes in pure water are simulated using the molecular dynamics method. Cavitation nucleation is generated by uniformly stretching the system under isothermal conditions, and the formation and development of cavitation nuclei are simulated and discussed at the molecular level. The processes of energy, pressure, and density are analyzed, and the tensile strength of the pure water and the critical volume of the bubble nuclei are investigated. The results show that critical states exist in the process of cavitation nucleation. In the critical state, the energy, density, and pressure of the system change abruptly, and a stable cavitation nucleus is produced if the energy barrier is broken and the critical volume is exceeded. System pressure and water density are the key factors in the generation of cavitation nuclei. When the critical state is surpassed, the liquid is completely ruptured, and the volume of the cavitation nucleus rapidly increases to larger than 100 nm3; at this point, the surface tension of the bubble dominates the cavitation nucleus, instead of intermolecular forces. The negative critical pressure for bubble nucleation is -198.6 MPa, the corresponding critical volume is 13.84 nm3, and the nucleation rate is 2.42×1032 m-3·-1 in pure water at 300 K. Temperature has a significant effect on nucleation: as the temperature rises, nucleation thresholds decrease, and cavitation nucleation occurs earlier.  相似文献   

18.
In the ultrasonic dispersion process, the ultrasonic cavitation effect can seriously affect the dispersion efficiency of magnetorheological polishing fluid (MRPF), but the mechanism remains unclear now. Through considering the continuity equation and Vand viscosity equation of the suspension, a revised cavitation bubble dynamic model in the MRPF was developed and calculated. The effects of presence or absence of solid particles, the volume fraction of solid particles, and viscosity on the cavitation bubble motion characteristics in the MRPF were discussed. Settlement experiments of the MRPF under ultrasonic and mechanical dispersion were observed. Analysis of particle dispersion is made by trinocular biomicroscope and image processing of the microscopic morphology of the MRPF. The results show that the high volume fraction of carbonyl iron particle (CIP) will significantly weaken the cavitation effect, and the low volume fraction of green silicon carbide (GSC) has a negligible effect on the cavitation effect in the MRPF. When the liquid viscosity is greater than or equal to 0.1 Pa·s, it is inconvenient to produce micro-jets in the MRPF. The sedimentation rate of the MRPF prepared by ultrasonic dispersion is lower than mechanical dispersion when the volume fraction of CIP is between 1% and 25%. The dispersion ratio under ultrasonic dispersion is lower than that under mechanical dispersion. The experimental results fit the simulation well. It offers a theoretical basis for exploring the ultrasonic cavitation effect in the industrial application of the MRPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号