首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners.  相似文献   

2.
Temporal integration for a 1000-Hz signal was determined for normal-hearing and cochlear hearing-impaired listeners in quiet and in masking noise of variable bandwidth. Critical ratio and 3-dB critical band measures of frequency resolution were derived from the masking data. Temporal integration for the normal-hearing listeners was markedly reduced in narrow-band noise, when contrasted with temporal integration in quiet or in wideband noise. The effect of noise bandwidth on temporal integration was smaller for the hearing-impaired group. Hearing-impaired subjects showed both reduced temporal integration and reduced frequency resolution for the 200-ms signal. However, a direct relation between temporal integration and frequency resolution was not indicated. Frequency resolution for the normal-hearing listeners did not differ from that of the hearing-impaired listeners for the 20-ms signal. It was suggested that some of the frequency resolution and temporal integration differences between normal-hearing and hearing-impaired listeners could be accounted for by off-frequency listening.  相似文献   

3.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

4.
A conditional-on-a-single-stimulus (COSS) analysis procedure [B. G. Berg, J. Acoust. Soc. Am. 86, 1743-1746 (1989)] was used to estimate how well normal-hearing and hearing-impaired listeners selectively attend to individual spectral components of a broadband signal in a level discrimination task. On each trial, two multitone complexes consisting of six octave frequencies from 250 to 8000 Hz were presented to listeners. The levels of the individual tones were chosen independently and at random on each presentation. The target tone was selected, within a block of trials, as the 250-, 1000-, or 4000-Hz component. On each trial, listeners were asked to indicate which of the two complex sounds contained the higher level target. As a group, normal-hearing listeners exhibited greater selectivity than hearing-impaired listeners to the 250-Hz target, while hearing-impaired listeners showed greater selectivity than normal-hearing listeners to the 4000-Hz target, which is in the region of their hearing loss. Both groups of listeners displayed large variability in their ability to selectively weight the 1000-Hz target. Trial-by-trial analysis showed a decrease in weighting efficiency with increasing frequency for normal-hearing listeners, but a relatively constant weighting efficiency across frequency for hearing-impaired listeners. Interestingly, hearing-impaired listeners selectively weighted the 4000-Hz target, which was in the region of their hearing loss, more efficiently than did the normal-hearing listeners.  相似文献   

5.
Speech-reception thresholds (SRT) were measured for 17 normal-hearing and 17 hearing-impaired listeners in conditions simulating free-field situations with between one and six interfering talkers. The stimuli, speech and noise with identical long-term average spectra, were recorded with a KEMAR manikin in an anechoic room and presented to the subjects through headphones. The noise was modulated using the envelope fluctuations of the speech. Several conditions were simulated with the speaker always in front of the listener and the maskers either also in front, or positioned in a symmetrical or asymmetrical configuration around the listener. Results show that the hearing impaired have significantly poorer performance than the normal hearing in all conditions. The mean SRT differences between the groups range from 4.2-10 dB. It appears that the modulations in the masker act as an important cue for the normal-hearing listeners, who experience up to 5-dB release from masking, while being hardly beneficial for the hearing impaired listeners. The gain occurring when maskers are moved from the frontal position to positions around the listener varies from 1.5 to 8 dB for the normal hearing, and from 1 to 6.5 dB for the hearing impaired. It depends strongly on the number of maskers and their positions, but less on hearing impairment. The difference between the SRTs for binaural and best-ear listening (the "cocktail party effect") is approximately 3 dB in all conditions for both the normal-hearing and the hearing-impaired listeners.  相似文献   

6.
Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.  相似文献   

7.
An analysis of psychophysical tuning curves in normal and pathological ears   总被引:2,自引:0,他引:2  
Simultaneous psychophysical tuning curves were obtained from normal-hearing and hearing-impaired listeners, using probe tones that were either at similar sound pressure levels or at similar sensation levels for the two types of listeners. Tuning curves from the hearing-impaired listeners were flat, erratic, broad, and/or inverted, depending upon the frequency region of the probe tone and the frequency characteristics of the hearing loss. Tuning curves from the normal-hearing listeners at low-SPL's were sharp as expected; tuning curves at high-SPL's were discontinuous. An analysis of high-SPL tuning curves suggests that tuning curves from normal-hearing listeners reflect low-pass filter characteristics instead of the sharp bandpass filter characteristics seen with low-SPL probe tones. Tuning curves from hearing-impaired listeners at high-SPL probe levels appear to reflect similar low-pass filter characteristics, but with much more gradual high-frequency slopes than in the normal ear. This appeared as abnormal downward spread of masking. Relatively good temporal resolution and broader tuning mechanisms were proposed to explain inverted tuning curves in the hearing-impaired listeners.  相似文献   

8.
Many competing noises in real environments are modulated or fluctuating in level. Listeners with normal hearing are able to take advantage of temporal gaps in fluctuating maskers. Listeners with sensorineural hearing loss show less benefit from modulated maskers. Cochlear implant users may be more adversely affected by modulated maskers because of their limited spectral resolution and by their reliance on envelope-based signal-processing strategies of implant processors. The current study evaluated cochlear implant users' ability to understand sentences in the presence of modulated speech-shaped noise. Normal-hearing listeners served as a comparison group. Listeners repeated IEEE sentences in quiet, steady noise, and modulated noise maskers. Maskers were presented at varying signal-to-noise ratios (SNRs) at six modulation rates varying from 1 to 32 Hz. Results suggested that normal-hearing listeners obtain significant release from masking from modulated maskers, especially at 8-Hz masker modulation frequency. In contrast, cochlear implant users experience very little release from masking from modulated maskers. The data suggest, in fact, that they may show negative effects of modulated maskers at syllabic modulation rates (2-4 Hz). Similar patterns of results were obtained from implant listeners using three different devices with different speech-processor strategies. The lack of release from masking occurs in implant listeners independent of their device characteristics, and may be attributable to the nature of implant processing strategies and/or the lack of spectral detail in processed stimuli.  相似文献   

9.
Simultaneous-masked psychophysical tuning curves (PTCs) were obtained from normal-hearing and sensorineural hearing-impaired listeners. The 20-ms signal was presented at the onset or at the temporal center of the 400-ms masker. For the normal-hearing listeners, as shown previously [S. P. Bacon and B. C. J. Moore, J. Acoust. Soc. Am. 80, 1638-1645 (1986)], the PTCs were sharper on the high-frequency side for a signal in the temporal center of the masker. For the hearing-impaired listeners, however, the shape of the PTC was virtually independent of the temporal position of the signal. These data suggest that the mechanisms responsible for sharpening the PTC with time in normal-hearing listeners are ineffective in listeners with moderate-to-severe sensorineural hearing loss.  相似文献   

10.
Growth-of-masking functions were obtained from 19 normal and 5 hearing-impaired listeners using a simultaneous-masking paradigm. When masker and probe frequency are identical, the slope of masking approximates 1.0 for both normal-hearing and impaired listeners. For masker frequencies less than or greater than probe frequency, the slopes for impaired listeners are shallower than those of normals. These findings are consistent with previously reported physiological data (single-fiber rate versus level and AP masking functions) for animals with induced cochlear lesions. Results are discussed in terms of a potential masking technique to estimate the growth of response in normal and impaired ears.  相似文献   

11.
Upward spreading of masking, measured in terms of absolute masked threshold, is greater in hearing-impaired listeners than in listeners with normal hearing. The purpose of this study was to make further observations on upward-masked thresholds and speech recognition in noise in elderly listeners. Two age groups were used: One group consisted of listeners who were more than 60 years old, and the second group consisted of listeners who were less than 36 years old. Both groups had listeners with normal hearing as well as listeners with mild to moderate sensorineural loss. The masking paradigm consisted of a continuous low-pass-filtered (1000-Hz) noise, which was mixed with the output of a self-tracking, sweep-frequency Bekesy audiometer. Thresholds were measured in quiet and with maskers at 70 and 90 dB SPL. The upward-masked thresholds were similar for young and elderly hearing-impaired listeners. A few elderly listeners had lower upward-masked thresholds compared with the young control group; however, their on-frequency masked thresholds were nearly identical to the control group. A significant correlation was found between upward-masked thresholds and the Speech Perception in Noise (SPIN) test in elderly listeners.  相似文献   

12.
The present study was designed to assess the effects of age on the time course of backward masking. In experiment 1, thresholds for detecting a 10-ms, 500-Hz sinusoidal signal were measured as a function of the temporal separation between the signal and a 50-ms broadband masker. Subjects were younger (18-24) and older (over age 65) adults with normal hearing (thresholds less than 20 dB HL) for frequencies of 4 kHz and below. Younger subjects exhibited less overall masking and steeper recovery functions than did the older adults. Masked thresholds for younger participants approached unmasked thresholds for signal-masker delays greater than 6-8 ms. In contrast, older adults exhibited significant masking even at the longest delay tested (20 ms). In experiment 2, signal duration was decreased to 5 ms for a separate group of younger adults. Although overall thresholds were elevated for the shorter signal duration, the slope of the backward masking recovery function was not different from that observed for younger adults in experiment 1. The results suggest that age, independent of hearing loss, affects the temporal course of backward masking.  相似文献   

13.
The study measured listener sensitivity to increments in the inter-onset interval (IOI) separating pairs of successive 20-ms 4000-Hz tone pulses. A silent interval between the tone pulses was adjusted across conditions to create reference tonal IOI values of 25-600 ms. For each condition, a duration DL for increments of the tonal IOI was measured in listeners comprised of young normal-hearing adults and two groups of older adults with and without high-frequency hearing loss. Discrimination performance of all listeners was poorest for the shorter reference IOIs, and improved to stable levels for longer reference intervals exceeding about 200 ms. Temporal sensitivity of the young listeners was significantly better than that of the elderly listeners in each condition, with the largest age-related differences observed for the shortest reference interval. Age-related differences were also observed for duration DLs measured using single 4000-Hz tone bursts set to three reference durations in the range 50-200 ms. The tone DLs of all listeners were smaller than the corresponding tone-pair IOI DLs, particularly for the shorter reference stimulus durations. There were no significant performance differences observed between the older listeners with and without hearing loss for either discrimination task.  相似文献   

14.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment.  相似文献   

15.
Psychophysical pulse-train forward-masking (PTFM) recovery functions were measured in fifteen subjects with the Nucleus mini-22 cochlear implant and six subjects with the Clarion cochlear implant. Masker and probe stimuli were 500-Hz trains of 200- or 77-micros/phase biphasic current pulses. Electrode configurations were bipolar for Nucleus subjects and monopolar for Clarion subjects. Masker duration was 320 ms. Probe duration was either 10 ms or 30 ms. Recovery functions were measured for a high-level masker on a middle electrode in all 21 subjects, on apical and basal electrodes in 7 of the Nucleus and 3 of the Clarion subjects, and for multiple masker levels on the middle electrode in 8 Nucleus subjects and 6 Clarion subjects. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the offset of the masker pulse train and the offset of the probe pulse train. All but 3 of the 21 subjects demonstrated recovery time constants on a middle electrode that were less than 95 ms. The mean time constant for these 18 subjects was 54 ms (s.d. 17 ms). Three other subjects tested on three electrodes exhibited time constants larger than 95 ms from an apical electrode only. Growth-of-masking slopes depended upon time delay, as expected from an exponential recovery process, i.e., progressively shallower slopes were observed at time delays of 10 ms and 50 ms. Recovery of threshold shift (in microA) for PTFM in electrical hearing behaves inthe same way as recovery of threshold shift (in dB) for pure-tone forward masking in acoustic hearing. This supports the concept that linear microamps are the electrical equivalent of acoustic decibels. Recovery from PTFM was not related to speech recognition in a simple manner. Three subjects with prolonged PTFM recovery demonstrated poor speech scores. The remaining subjects with apparently normal PTFM recovery demonstrated speech scores ranging from poor to excellent. Findings suggest that normal PTFM recovery is only one of several factors associated with good speech recognition in cochlear-implant listeners. Comparisons of recovery curves for 10- and 30-ms probe durations in two subjects showed little or no temporal integration at time delays less than 95 ms where recovery functions have steep slopes. The same subjects exhibited large amounts of temporal integration at longer time delays where recovery slopes are more gradual. This suggests that probe detection depends primarily on detection of the final pulses in the probe stimulus and supports the use of offset-to-offset time delays for characterizing PTFM recovery in electric hearing.  相似文献   

16.
The purpose of this experiment was to evaluate the utilization of short-term spectral cues for recognition of initial plosive consonants (/b,d,g/) by normal-hearing and by hearing-impaired listeners differing in audiometric configuration. Recognition scores were obtained for these consonants paired with three vowels (/a,i,u/) while systematically reducing the duration (300 to 10 ms) of the synthetic consonant-vowel syllables. Results from 10 normal-hearing and 15 hearing-impaired listeners suggest that audiometric configuration interacts in a complex manner with the identification of short-duration stimuli. For consonants paired with the vowels /a/ and /u/, performance deteriorated as the slope of the audiometric configuration increased. The one exception to this result was a subject who had significantly elevated pure-tone thresholds relative to the other hearing-impaired subjects. Despite the changes in the shape of the onset spectral cues imposed by hearing loss, with increasing duration, consonant recognition in the /a/ and /u/ context for most hearing-impaired subjects eventually approached that of the normal-hearing listeners. In contrast, scores for consonants paired with /i/ were poor for a majority of hearing-impaired listeners for stimuli of all durations.  相似文献   

17.
18.
Three experiments were conducted to determine whether listeners with a sensorineural hearing loss exhibited greater than normal amounts of masking at frequencies above the frequency of the masker. Excess masking was defined as the difference (in dB) between the masked thresholds actually obtained from a hearing-impaired listener and the expected thresholds calculated for the same individual. The expected thresholds were the power sum of the listener's thresholds in quiet and the average masked thresholds obtained from a group of normal-hearing subjects at the test frequency. Hearing-impaired listeners, with thresholds in quiet ranging from approximately 35-70 dB SPL (at test frequencies between 500-3000 Hz), displayed approximately 12-15 dB of maximum excess masking. The maximum amount of excess masking occurred in the region where the threshold in quiet of the hearing-impaired listener and the average normal masked threshold were equal. These findings indicate that listeners with a sensorineural hearing loss display one form of reduced frequency selectivity (i.e., abnormal upward spread of masking) even when their thresholds in quiet are taken into account.  相似文献   

19.
The forward-masking properties of inharmonic complex stimuli were measured both for normal and hearing-impaired subjects. The signal threshold for a 1000-Hz pure-tone probe was obtained for six different maskers, which varied in the number of pure-tone components. The masking stimuli consisted of 1, 3, 5, 7, 9, or 11 components, logarithmically spaced in frequency surrounding the signal and presented at a fixed level of 80 dB SPL per component. In most normal-hearing subjects, the threshold for the probe decreased as the number of masking components was increased, demonstrating that stimuli with more components tended to be less effective maskers. Results from hearing-impaired subjects showed no decrease in threshold with increasing number of masking components. Instead, the thresholds increased as more components were added to the first masker. These results appear to be consistent with suppression effects within the multicomponent maskers for the normal subjects and a lack of suppression effects for the hearing-impaired subjects. The results from the normal-hearing subjects are also consistent with "across-channel" cuing.  相似文献   

20.
A triadic comparisons task and an identification task were used to evaluate normally hearing listeners' and hearing-impaired listeners' perceptions of synthetic CV stimuli in the presence of competition. The competing signals included multitalker babble, continuous speech spectrum noise, a CV masker, and a brief noise masker shaped to resemble the onset spectrum of the CV masker. All signals and maskers were presented monotically. Interference by competition was assessed by comparing Multidimensional Scaling solutions derived from each masking condition to that derived from the baseline (quiet) condition. Analysis of the effects of continuous maskers revealed that multitalker babble and continuous noise caused the same amount of change in performance, as compared to the baseline condition, for all listeners. CV masking changed performance significantly more than did brief noise masking, and the hearing-impaired listeners experienced more degradation in performance than normals. Finally, the velar CV maskers (g epsilon and k epsilon) caused significantly greater masking effects than the bilabial CV maskers (b epsilon and p epsilon), and were most resistant to masking by other competing stimuli. The results suggest that speech intelligibility difficulties in the presence of competing segments of speech are primarily attributable to phonetic interference rather than to spectral masking. Individual differences in hearing-impaired listeners' performances are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号